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GOALS OF THIS TALK

» Define the Hessian of...

+ ..acubic
¢ ...an element of the modular curve X (3)

¢ ..aj-invariant
 View the corresponding dynamical system as a Lattés map

» Draw Hessian graphs: graphs of j-invariants that are not isogeny graphs!
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HESSIAN OF A CUBIC CURVE



MAIN INGREDIENTS

k = (perfect) field of characteristic # 2,3
G(X,Y, Z) = homogeneous cubic polynomial ink[X, Y, Z]

H(G) = Hessian matrix of G =

092G
0X?
9%G
Y 0X
092G
0Z0X

892G
0XoY
9%G
ay?
9%G
0Z0Y

2°G
0X9Z

oY oZ

2°G
072
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MAIN INGREDIENTS

k = (perfect) field of characteristic # 2,3
G(X,Y, Z) = homogeneous cubic polynomial ink[X, Y, Z]

892G

X2

_ . . _ 82G
H(G) = Hessian matrix of G = | 5%
092G

920X

Consider the (possibly singular) cubic

E:GX,Y,Z)=0.
The Hessian of F is the (possibly singular) cubic

Hess(E): det(H(G)) = 0.

892G
0X0Y
9%G
ay?
9%G
0Z0Y

2°G
0X9Z

oY oZ

2°G
072



GEOMETRIC INTERPRETATION
E N Hess(E) = inflection points of E
= E[3]
= Hess(F)[3]

(when FE is an elliptic curve)
(when Hess(E) is an elliptic curve)
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Hess(E): 25 + 4> +1 = —ay
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GEOMETRIC INTERPRETATION

E N Hess(E) = inflection points of E

= E[3]
= Hess(F)[3]

Example (over Q):

E: 2% +y3+1=6xy
Hess(E): 25 + 4> +1 = —ay

EmHess(E):{(HEQ\/j?’;o:Q,(HE;j?’;

(0:%:1),(—1:0:1),

(O:—l:l)(—l:l:O)}

1:

(when FE is an elliptic curve)
(when Hess(E) is an elliptic curve)

o
N——

14

1]




HESSIAN(-FRIENDLY) FORM

* Pick 9 (inflection) points
* Parametrize cubics through them

The Hesse pencil
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HESSIAN(-FRIENDLY) FORM

* Pick 9 (inflection) points
* Parametrize cubics through them

The Hesse pencil

— theinflection points of X® + Y3 + 73 =0
D LS L

— A XYZ4+u(X°+Y°+2°)=0

(Hessian of X3 4+ Y3 + Z3)

for [\: u] € P(k)
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HESSIAN(-FRIENDLY) FORM

The Hesse pencil

* Pick 9 (inflection) points — the inflection points of X® + Y3 + Z3 =0
- Parametrize cubics through them S NG o e L ) =

(Hessian of X3 + Y3 + Z3)

3
(smooth iff 4 # 0 and (3;) # —1) for [\: u] € P(k)
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HESSIAN(-FRIENDLY) FORM

The Hesse pencil

* Pick 9 (inflection) points — the inflection points of X® + Y3 + Z3 =0
- Parametrize cubics through them S NG o e L ) =

(Hessian of X3 + Y3 + Z3)
A 3
(smooth iff 4 # 0 and <3M> # —1) for [\: u] € P(k)

Fun facts:
« The Hesse pencil is a model for the modular curve X (3):

[A: ~ (Isomorphism class of elliptic curves, 3-torsion basis).
¢ The ‘cubed’ Hesse pencil is a model for the modular curve X (3):

ESENTH - (Isomorphism class of elliptic curves, order-3 subgroup).



HESSIAN MAP ON X (3)

Weierstrass form

(X3 4+ AXZ?+ BZ3 — Y27 = )
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HESSIAN MAP ON X (3)

Weierstrass form

(XP+AXZ2+ BZ3 —Y?Z =0

Garbage form

Hess [_

8(3XY? +3AX°Z +9BX 7% — A*Z%) = 0
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Weierstrass form

(XP+AXZ2+ BZ3 —Y?Z =0

(AXYZ 4 (X3 + Y3 + 2%) =0

Hessian form

Garbage form

Hess [_

8(3XY? +3AX°Z +9BX 7% — A*Z%) = 0
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HESSIAN MAP ON X (3)

Weierstrass form Garbage form

Hess [_

(X? 4 AXZ?+ BZ3 — Y22 =0 8(3XY? + 3AX°Z + 9BX 2% — A2Z%) =0

Hess [
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HESSIAN MAP ON X (3)

Weierstrass form Garbage form

Hess [_

(X? 4 AXZ?+ BZ3 — Y22 =0 8(3XY? + 3AX°Z + 9BX 2% — A2Z%) =0

Hess [

XY Z 4+ pu(XP+YP + 2% =0 (1081 + X)XV Z + (—3uX) (XP + Y3 + 2%) = 0

Hessian form Hessian form 2

Bottom line

The Hessian map on the Hesse pencil can be viewed as a map on P! (k) = X (3):

A: o [ op] e [108” + NP —3uA?]



HESSIAN MAP ON X (1)

What about j-invariants?
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HESSIAN MAP ON X (1)

What about j-invariants?
PROPOSITION
Let E' be a cubic. If E is...

* ...nonsingular and j(E) # 0, then

j(Hess(E)) =

(6912 — j(E))°

27(j(E))?
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HESSIAN MAP ON X (1)

What about j-invariants?
PROPOSITION
Let E' be a cubic. If E is...

* ...nonsingular and j(E) # 0, then

(6912 — j(E))3
27(j(E))?

 ..nonsingular and j(E) = 0, then Hess(E) is the union of three lines.

j(Hess(E)) =

* ...the union of three lines, then Hess(E) is the union of three lines.

Bottom line
The Hessian map on the Hesse pencil can be viewed as a map on P! (k) = X (1):
H: [j: w]— [(6912w — j)3: 275%w]



HESSIAN GRAPHS

Fork = Fgl...

What happens if we iterate I over P! (k)?
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FUNCTIONAL GRAPHS

k = field of characteristic ¢ {2, 3}
¢(x) = rational function in k(z)
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FUNCTIONAL GRAPHS

k = field of characteristic ¢ {2, 3}
¢(z) = rational function in k(x)

The functional graph of ¢ is the directed
graphs.t.

 the vertices are the elements of k;
 thereisanedge a — Siff 5 = ¢(«)
(counted with multiplicity).
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¢(z) = rational function in k(x)

Example: ¢(z) = 22 on F;
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FUNCTIONAL GRAPHS

k = field of characteristic ¢ {2, 3}
¢(z) = rational function in k(x)

Example: ¢(z) = 22 on F;
The functional graph of ¢ is the directed
graph s.t. ®
 the vertices are the elements of k;
 thereisanedge a — Siff 5 = ¢(«)
(counted with multiplicity).
When ¢(«) is not defined, we set £

P(a) = oc. @Z
&



SOME GENERAL (OBVIOUS) REMARKS

Example: ¢(z) = M on [y

T

Each connected
component of the graph
has at most one cycle
(exactly 1 if k is finite).
The indegree of each
vertex is at most the the
maximum between the
degree of the numerator
and the degree of the
denominator of ¢(x).

The outdegree of each
vertex is (at least) 1.
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LATTES MAPS

k = field of characteristic # 2, 3
¢ = rational map P! (k) — P! (k) of degree d > 2

We say that ¢ is a Lattés map if there exist:

P (k) —————— Pl(k)
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LATTES MAPS

k = field of characteristic # 2, 3
¢ = rational map P! (k) — P! (k) of degree d > 2

We say that ¢ is a Lattés map if there exist:
+ anelliptic curve E overk,

P!(K) — PL(K)

0]
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LATTES MAPS

k = field of characteristic # 2, 3
¢ = rational map P! (k) — P! (k) of degree d > 2
We say that ¢ is a Lattés map if there exist:

+ anelliptic curve E overk,
e amorphismvy: E — E,
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LATTES MAPS

k = field of characteristic # 2, 3
¢ = rational map P! (k) — P! (k) of degree d > 2

We say that ¢ is a Lattés map if there exist:

+ anelliptic curve E overk,

e amorphismvy: E — E,

- afinite separable covering 7: E — P!(k),
such that the following diagram is commutative:

Y

Ek) ——— E(K)

11/28



LATTES MAPS OVER C

THEOREM
Arational map ¢: P*(C) — P(C) is a Lattés map if and only if:
1. ¢ has no exceptional points.
2. There exists a ramification function v: P1(C) — N* such that:

v(¢(P)) = ep(¢) - v(P) forall P € P}(C).
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LATTES MAPS OVER C

The set of exceptional points of ¢ is the largest finite set T C C such
that ¢~ 1(T) = T.

THEOREM
Arational map ¢: P*(C) — PY(C)isa
1. ¢ has no exceptional points.

es map if and only if:

2. There exists a ramification function v: P1(C) — N* such that:

v(¢(P)) = ep(¢) - v(P) forall P € P}(C).
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LATTES MAPS OVER C

THEOREM
Arational map ¢: P1(C) — P(C) is a Lattés map if and only if:
1. ¢ has no exceptional points.
2. There exists a ramification function v: P'(C) — N* such that:

v(¢(P)) = ep(¢) - v(P) forall P € P}(C).

/

The ramification index of ¢ at P is:

ep(6) = ordp(é() — B(P)).

A point P is a critical point if ep(¢) > 2.
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LATTES MAPS OVER C

THEOREM
Arational map ¢: P*(C) — P(C) is a Lattés map if and only if:
1. ¢ has no exceptional points.
2. There exists a ramification function v: P1(C) — N* such that:

v(¢(P)) = ep(¢) - v(P) forall P € P}(C).

Conclusion: to check if a map is Lattés, we only need to inspect its post-critical portrait,
i.e. the points of the form ¢(™)(P), where P is critical.
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13/28



HESSIAN AS A LATTES MAP OVER C

Post-critical portrait of H:
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HESSIAN AS A LATTES MAP OVER C

Post-critical portrait of H:

We can define a
ramification function v that

5
is 1 everywhere except “

@ v(1728) = 2
3

—

from...
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HESSIAN AS A LATTES MAP OVER C

Post-critical portrait of H:

We can define a
ramification function v that

5
is 1 everywhere except “

from...

COROLLARY

H is a Lattés map over C.

13/28



OUR CONTRIBUTIONS

« Hand A are Lattes maps in any characteristic other than 2 and 3
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OUR CONTRIBUTIONS

« Hand A are Lattes maps in any characteristic other than 2 and 3

« complete picture of Hessian graphs over number fields and finite fields

 fast algorithms to compute iterated Hessian

 algorithms to tell whether two j-invariants are in the same connected component

+ wishful thinking on finding supersingular j-invariants

14/28



Ingredients for a Lattés map:
THE MODEL CU RVE/EN DOMORPHISM * Model elliptic curve

* Morphism on model curve

* Projection map

Let k € k*.
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THE MODEL CURVE/ENDOMORPHISM

Let k € k*.

Model elliptic curve Ey:

Ingredients for a Lattés map:
* Model elliptic curve Vv
* Morphism on model curve

* Projection map

By (k)
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Ingredients for a Lattés map:
THE MODEL CURVE/ENDOMORPHISM * Model elliptic curve v
* Morphism on model curve v
* Projection map
Let k € k*. By (k) LN By (k)

* Model elliptic curve F:

S
<
[\
I
8
w
_l_
|

* 3-endomophismon Ej:

1/Jk Er — B with ker(z/;k) = < (0, ?) >
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Ingredients for a Lattés map:

THE MODEL CURVE/ENDOMORPHISM

* Model elliptic curve v
* Morphism on model curve v
* Projection map Vv

_ [ _

Let k € k*. B (®) ———— Ei(k)

* Model elliptic curve F:
2 3 k i i
Ep:y° =2+ 1

PL(k) T) P! (k)
k
* 3-endomophismon Ej:

1/Jk Er — B with ker(z/;k) = < (0, f) >

THEOREM (-, P., T.)

k =108 d10s = A
~~  (Hesse pencil)
(x,y) ¥ [z 1]
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Ingredients for a Lattés map:

* Model elliptic curve

v

THE MODEL CURVE/ENDOMORPHISM
* Morphism on model curve v

* Projection map
Pk

v

By (k) ————— Ei(k)

Letk € k*.
* Model elliptic curve F:
. . k. Vs Vs
Ep:vy? =23+ 1
Pl(k) ——— > P(k)
o7
* 3-endomophismon Ej:
k
1/Jk Er — B with ker(z/;k) = < (0, ?) >
THEOREM (-, P., T.)
k=108 $108 = A k= —6912 $_eo12 = H

~~  (Hesse pencil) ~>  (j-invariants)

(z,y) ¥ [a: 1] (z,y) ¥ [2°: 1]
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Ingredients for a Lattés map:

* Model elliptic curve

v

THE MODEL CURVE/ENDOMORPHISM
* Morphism on model curve v

* Projection map

bk

v

By (k) ————— Ei(k)

Letk € k*.
* Model elliptic curve Ej: J(Er) =0
s k 4 4
Ek I/Z = JIJ + 1
Pl(k) ——— > P(k)
o7
* 3-endomophismon Ej:
k
1/Jk Er — B with ker(z/;k) = < (0, ?) >
THEOREM (-, P., T.)
k =108 dr0s = A k= —6912 b_go12 = H

~~  (Hesse pencil) ~>  (j-invariants)

(z,y) ¥ [a: 1] (z,y) ¥ [2°: 1]
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Ingredients for a Lattés map:

* Model elliptic curve

v

THE MODEL CURVE/ENDOMORPHISM
* Morphism on model curve v

* Projection map
Pk

v

By (k) ————— Ei(k)

* Model elliptic curve Ej: J(Er) =0

Let k € k*.

o7

* 3-endomophismon Ej:

1/Jk Er — B with ker(z/;k) = < (0, f) >
92 =131

THEOREM (-, P., T.)

108 = A k= —6912 $_e912 =H

k=108
~>  (j-invariants)

~~  (Hesse pencil)

(z,y) ¥ [a: 1] (z,y) ¥ [2°: 1]

e

4 Pl(k) ——— > P(k)
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DRAWING THE HESSIAN GRAPH



DYNAMICS OF GROUP ENDOMORPHISMS WITH PRIME KERNEL |

Goal: Understanding the dynamics of the 3-endomorphism ).
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DYNAMICS OF GROUP ENDOMORPHISMS WITH PRIME KERNEL |
Goal: Understanding the dynamics of the 3-endomorphism ).

Main building block: the arborescence T"

VAR VAV
v NS S

9 T} 2 Ts°

+ Ifm < oo, then T} is finite and every leaf has depth m.
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DYNAMICS OF GROUP ENDOMORPHISMS WITH PRIME KERNEL |
Goal: Understanding the dynamics of the 3-endomorphism ).

Main building block: the arborescence T"

AR,
v\ \

9 T} 2 Ts°

+ Ifm < oo, then T} is finite and every leaf has depth m.
+ T9° has no leaves.

\/
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DYNAMICS OF GROUP ENDOMORPHISMS WITH PRIME KERNEL |
Goal: Understanding the dynamics of the 3-endomorphism ).

Main building block: the arborescence T"

V

VY W
NS

+ Ifm < oo, then T} is finite and every leaf has depth m.
+ T9° has no leaves.
¢ —1 ifitistheroot,

« Every non-leaf has indegree i
¢ otherwise.

16/28



DYNAMICS OF GROUP ENDOMORPHISMS WITH PRIME KERNEL Il

G = group with identity O
1 = endomorphism of G with | ker ¢)| = ¢ prime

Given P € G, let 7p be the subgraph whose vertices are {Q € G | 3n € N : (" (Q) = P}.
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Then 1o is isomorphic to T7". \l/ L/
Every connected component is one of the following: \
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G = group with identity O
1 = endomorphism of G with | ker ¢)| = ¢ prime

Given P € G, let 7p be the subgraph whose vertices are {Q € G | 3n € N : (" (Q) = P}.
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Letm € N* U {oo} be the maximal depth in 7.

Then 7o is isomorphic to T7". \l L/
Every connected component is one of the following: \
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DYNAMICS OF GROUP ENDOMORPHISMS WITH PRIME KERNEL Il

G = group with identity O
1 = endomorphism of G with | ker ¢)| = ¢ prime

Given P € G, let 7p be the subgraph whose vertices are {Q € G | 3n € N : (" (Q) = P}.

THEOREM (FUNCTIONAL GRAPH OF 7) ON G)

Letm € N* U {oo} be the maximal depth in 7.

Then 1o is isomorphic to T7". \l»/ \L/

Every connected component is one of the following: \ / \ /
1. aperiodic cycle { P, ..., P}, with Tp, ~ 70; ]5()% 131 ]527 e

2. an oriented line { P; };cz, with Tp, ~ 10;

3. an oriented semiline { P; };en, with Tp, ~ Tfin(i’m). Case 3

17/28



BACK TO THE HESSIAN GRAPH

Bottom line
We know how 15, behaves on subgroups of Ej.
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BACK TO THE HESSIAN GRAPH

Bottom line
We know how 15, behaves on subgroups of Ej.

Let us refine the Lattés diagram... ...to study the Hessian graph over k

Uy,

E(k) ———— Ep(k)

Pl(k) ——  Pl(k) Pl(k) ———— PL(k)

o o
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BACK TO THE HESSIAN GRAPH

Bottom line
We know how 15, behaves on subgroups of Ej.

Let us refine the Lattés diagram... ...to study the Hessian graph over k
B — s B ) 2 i ?
T T ] m
Pl(k) ——  Pl(k) P! (k) ————— P(k)

o o
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HESSIAN GRAPH ON k

Some ingredients

Sk(k) = {(z,y) € By |z € k} U{O},
ks :k(%)xek,
Si(ks) = {(z,y) € By | 2® € k} U{O}.
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HESSIAN GRAPH ON k

Some ingredients
={(z,y) € By |z €k} U{O},
k(f):veﬂm
{(z,y) € By |2° e ky u{O}.

Si(k

)
ks
Sk(ks) =

THEOREM (-, P.,, T.)

The following diagram is commutative.

(z,y)  Skk) ———— Sk(k)
P
1] PUk) — plk)

A ] —— [kp® + 230 —3u)?]
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HESSIAN GRAPH ON k

Some ingredients
k) = {(z,y) € Ex |z € k} U{O},
k3 = k(f):veﬂm
ks) =

{(z,y) € By | 2*> e k} U{O}.
THEOREM (-, P.,, T.)

The following diagram is commutative.

¢108

(z,y)  Sios(k) ——— Sios(k)

|- I
A (Hesse pencil)

[z:1]  PYk) ———Pl(k)
[A: ] — [108u3 + A3 1 —3u\?]
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HESSIAN GRAPH ON k

Some ingredients
={(z,y) € By |z € k} U{O},
k(f):veﬂm
{(z,y) € Ey | 2* € k} U{O}.

Sk(k

)
ks
Sk(ks) =

THEOREM (-, P.,, T.)

The following diagram is commutative too.

(0

(z,y)  Sk(ks) ————— Sp(ks)

19/28



HESSIAN GRAPH ON k

Some ingredients
={(z,y) € Ex |z € k} U{O},
k(f)weﬂm

Sk(k

)
ks
Sk(ks) =

THEOREM (-, P., T.)

The following diagram is commutative too.

P_6912
(,y) S—6912(ks) —— S_go12(k3)

| A g
H (j-invariants)

[3:1] PYk) ———PY(k)

[ w] — [(—6912w)? : ~2752u]

{(z,y) € B |2° ek} U{O}.

19/28



Sk(k) AND Sk (ks)
For every k, u € k*, consider the isomorphism

2

Qbu : By — Euﬁkv (a:,y) — (U x,u3y),

whose inverse is ¢,,-1.
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Sk(k) AND Si.(k3)
For every k, u € k*, consider the isomorphism

2z, uby),

¢u : Ek — Eu6k’ (iL’,y) — (U
whose inverse is ¢,,—1.

PROPOSITION (-, P, T ( preimages of the quadratic twists

Sik)= J ¢ _1(Eusik)

uekr/(k*)2
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Sk(k) AND Si.(k3)
For every k, u € k*, consider the isomorphism

2z, uby),

¢u : Ek — E’LL6k’ (l’,y) — (u
whose inverse is ¢,,—1.

PROPOSITION (-, P, T ( preimages of the quadratic twists

Sik)= J ¢ _1(Eusik)

and

Sika) = |J ¢ 3 (Bu(®).

uek* /(k*)6
& preimages of the sextic twists

20/28



HESSIAN GRAPH OVER I,



BENEFITS OF FINITE FIELDS

From now on we focus on H
(Hessian of j-invariants)

E: y?=2%-1728
S = Si(ks)
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BENEFITS OF FINITE FIELDS
Example: Hessian graph over [F1g
From now on we focus on H
(Hessian of j-invariants)
E: y?=2%-1728
S = Si(ks)

+ Sisunion of 2 or 6 subgroups.

(®
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BENEFITS OF FINITE FIELDS
Example: Hessian graph over [F1g

From now on we focus on H
(Hessian of j-invariants)

E: y?=2%-1728

S = Sg(ks)
© + Sisunion of 2 or 6 subgroups.
& * The structure of E(F,) and its

twists can be explicitly
computed.
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BENEFITS OF FINITE FIELDS
Example: Hessian graph over [F1g

From now on we focus on H
(Hessian of j-invariants)

E: y?=2%-1728

S = Sg(ks)
© + Sisunion of 2 or 6 subgroups.
& * The structure of E(F,) and its

twists can be explicitly
computed.

» Even more information when E
is supersingular (char(F,) = 2
mod 3).

21/28



LEAVES AND TRACES
Example: Connected component of Hessian
graph over Fg, vertices labelled as (4, [tr(E(j))]).

The leaves of the Hessian graph are \ /@
exactly those corresponding to curves

g /@'\@

PrRopPOSITION (-, P., T.)




qg=2 mod 3

THEOREM (-, P, T.)
Letq + 1 = 3N, with ged(3, N) = 1. In the Hessian graph over F:

1. There are N periodic elements: j = 1728, oo are self-loops with indegree 2, while the
others alternate between indegree 1 and 3.

Example: Hessian graph
over Fq7.
White vertices are those in

m(E(F17)).
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qg=2 mod 3

THEOREM (-, P, T.)
Letq + 1 = 3N, with ged(3, N) = 1. In the Hessian graph over F:

2. Every periodic element is the root of [indegree —1] isomorphic arborescences. The leaves
have all depth 2d, and the indegree of non-periodic elements is

1 if odd depth,
3 (resp. 0) if even depth and are not (resp. are) leaves.

0 Example: Hessian graph over Fgq

9 . O%Qiii \/ .

5

Oob
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qg=2 mod 3

THEOREM (-, P, T.)
Letq + 1 = 3N, with ged(3, N) = 1. In the Hessian graph over F:
3. The length of every cycle divides the length of a maximal cycle, which is

ordy(—3) ifdneNst (-3)"=—-1mod N,
2ordy(—3) otherwise.

Example: Hessian graph over Fy;

N
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g=1 mod 3
THEOREM (-, P, T.)

Let ¢ = 1 mod 3. The Hessian graph over IF,, is the union of six subgraphs, which can intersect
only in0,1728, 00 € PL(F,).

LOL N O

Example: Hessian graph over 72
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g=1 mod 3

THEOREM (-, P, T.)

Let ¢ = 1 mod 3. The Hessian graph over IF,, is the union of six subgraphs, which can intersect
only in0,1728, 00 € PL(F,).

For each such subgraph, there is m € N such that its connected components consist of cycles,
whose vertices are the roots of arborescences T3,

E O S A R

Example: Hessian graph over 72



g=1 mod 3

THEOREM (-, P, T.)

Let ¢ = 1 mod 3. The Hessian graph over IF,, is the union of six subgraphs, which can intersect
only in0,1728, 00 € PL(F,).
For each such subgraph, there is m € N such that its connected components consist of cycles,
whose vertices are the roots of arborescences T3", with the following modifications:
e The arborescences rooted in co are pruned of one node at depth 1 if m > 1, and of two
additional nodes at depth 2 if m > 2.
« Ifthe arborescences are rooted in 1728, then they are pruned of one node at depth 1 if
m > 1.

E O S A% R

Example: Hessian graph over 72



g=1 mod 3

THEOREM (-, P, T.)

Let ¢ = 1 mod 3. The Hessian graph over IF,, is the union of six subgraphs, which can intersect
only in0,1728, 00 € PL(F,).
For each such subgraph, there is m € N such that its connected components consist of cycles,
whose vertices are the roots of arborescences T3", with the following modifications:
e The arborescences rooted in co are pruned of one node at depth 1 if m > 1, and of two
additional nodes at depth 2 if m > 2.
« Ifthe arborescences are rooted in 1728, then they are pruned of one node at depth 1 if
m > 1.
Moreover, three of such subgraphs have m = 0, two of them have m = 1, and the last one has
m > 1.

E O S A% R

Example: Hessian graph over 72



WISHFUL THINKING ON SUPERSINGULAR ECS



SECUERS: AN OPEN PROBLEM

Some cryptosystems require Supersingular Elliptic Curves of Unknown Endomorphism Ring
(SECUERS).
Problem: The only known way to get a SECUER is by means of a trusted setup.
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Dream: exploiting Hessian graphs by...

¢ ..finding which connected components contain supersingular elliptic curves,



SECUERS: AN OPEN PROBLEM

Some cryptosystems require Supersingular Elliptic Curves of Unknown Endomorphism Ring
(SECUERS).

Problem: The only known way to get a SECUER is by means of a trusted setup.

Dream: exploiting Hessian graphs by...
¢ ..finding which connected components contain supersingular elliptic curves,

+ ..finding sufficient conditions on a (possibly ordinary) elliptic curve E to enforce that
Hess™(E) is supersingular for somen > 1.



SUPERSINGULAR COMPONENTS

We say that a component of the Hessian graph is supersingular if it contains at least one
supersingular vertex.

Example: Supersingular vertices on Hessian graph over [y g2.

26/28



NECESSARY CONDITIONS FOR SUPERSINGULAR COMPONENTS |

)
Example: Hessian graph over [Fag,
vertices labelled as (4, [tr(E(4))])-
(o)
o
(4
& &
D
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NECESSARY CONDITIONS FOR SUPERSINGULAR COMPONENTS |

)
Example: Hessian graph over [Fag,
vertices labelled as (4, [tr(E(4))])-
(o)
o

@ PROPOSITION (-, P, T.)
§ In the Hessian graph over ), the trace of

each elliptic curve (defined over Fp,) in a

@”‘ supersingular component is a multiple

of 3.

~ 27/28



NECESSARY CONDITIONS FOR SUPERSINGULAR COMPONENTS Il

PrRoPOSITION (-, P., T.)

In the Hessian graph over IF,., each supersingular j-invariants lies in w(E(F :)).

Non-example: Hessian graph over Fg.

R q‘%{ O‘O\{
! =
’?}H %" Oj\o — f }\"«o
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NECESSARY CONDITIONS FOR SUPERSINGULAR COMPONENTS Il

PropPoOSITION (-, P, T.)

In the Hessian graph over IF,,., each supersingular j-invariants lies in w(E(F :)).

Non-example: Hessian graph over [Fs;.

SN el e ]
PSR ES S

28/28



NECESSARY CONDITIONS FOR SUPERSINGULAR COMPONENTS Il

ProPOSITION (-, P, T.)

In the Hessian graph over IF,,., each supersingular j-invariants lies in w(E(F:)).

Example: Hessian graph over ;2.

@@QQQ
ﬁ*@%

uﬁﬁ

'xwf‘

Mf““’“

Q@ i

@ s
e

O\‘o/’
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NECESSARY CONDITIONS FOR SUPERSINGULAR COMPONENTS Il

PropPOSITION (-, P, T.)

In the Hessian graph over IF,., each supersingular j-invariants lies in w(E(F:)).

Example: Hessian graph over Fyg2.
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Thank you for your attention!

M. Mula, F. Pintore, D. Taufer,
The Hessian of elliptic curves,

ArXiv: 2407.17042, 2024.


https://arxiv.org/abs/2407.17042
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HESSIAN GRAPHS (AND THEIR TWINS)

We call the Hessian graph the functional graph of the map

(6912 — 5)3
27(4)

More generally, we can consider, for each k, £ € Fy, the functional graphs of

Hess(j) =

(x+ k)3
gk,e(w) = T

so that Hess = g_4.1728,—27.

PrRoOPOSITION

The functional graphs corresponding to g1 ¢, g2.¢, - . . are isomorphic.
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