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Motivations Background Contributions

Supersingular endomorphism ring problem

The supersingular endomorphism ring problem (EndRing):

Given a supersingular elliptic curve E , find a basis of its endomorphism ring End pE q.

[Rob22b] Given some integer factorisation, solving ordinary EndRing takes polynomial time.
[Wes21] EndRing ðñ Isogeny Problem under the Generalized Riemann Hypothesis.

● Some protocols give a public endomorphism θ P EndpE qzZ:
[Cas+18] CSIDH The Frobenius endomorphism πE : px , yq ÞÑ pxp, ypq.
[Feo+23] SCALLOP An pZ ` f Zrisq-orientation with f a large prime.
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Supersingular endomorphism ring problem given one endomorphism

The supersingular endomorphism ring problem given one endomorphism:

Given a supersingular elliptic curve E and an endomorphism θ P EndpE qzZ,
find a basis of its endomorphism ring End pE q.
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Classical p1{2 expplog deg θq under heuristics
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Complexity of EndRing and its variant for an elliptic curve defined over Fp2 , with p a prime. [Arp+22]

5 / 20



Motivations Background Contributions

Supersingular endomorphism ring problem given one endomorphism

The supersingular endomorphism ring problem given one endomorphism:

Given a supersingular elliptic curve E and an endomorphism θ P EndpE qzZ,
find a basis of its endomorphism ring End pE q.

EndRing EndRing given one endomorphism θ

Classical p1{2 degpθq
1{4under GRH under heuristics

Quantum p1{4 exppOp
a

logpdeg θq log logpdeg θqqqunder GRH under heuristics

Complexity of EndRing and its variant for an elliptic curve defined over Fp2 , with p a prime. [Arp+22]

5 / 20



Motivations Background Contributions

Supersingular endomorphism ring problem given one endomorphism

The supersingular endomorphism ring problem given one endomorphism:

Given a supersingular elliptic curve E and an endomorphism θ P EndpE qzZ,
find a basis of its endomorphism ring End pE q.

EndRing EndRing given one endomorphism θ

Classical p1{2 degpθq
1{4under GRH under heuristics

Quantum p1{4 subexpplogpdeg θqqunder GRH under heuristics

Complexity of EndRing and its variant for an elliptic curve defined over Fp2 , with p a prime. [Arp+22]

5 / 20



Motivations Background Contributions

Orientations [CK20]

Let θ P EndpE qzZ.
● Zrθs » ZrX s{ ă X 2 ` pθ̂ ` θqX ` deg θ ą, i.e. Zrθs is a quadratic order.
● Zrθs ãÑ EndpE q.

Let O be an order of an imaginary quadratic field K .
● An embedding ι : K ãÑ EndpE q b Q is called an K -orientation,

it is an O-orientation if ιpOq Ď EndpE q.
● An Zrωs-orientation ι is entirely given by ιpωq P End pE q.

Knowing an endomorphism Knowing an orientation
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Oriented isogenies

Let ι : Zrωs ãÑ EndpE1q be an orientation with ιpωq “ θ. Let φ : E1 Ñ E2 an isogeny.

E1 E2

φ
θ

φ̂˚pφ˚pθqq
?
“ θφ̂˚pφ˚pθqq “ pdegφq2 ¨ θφ̂˚pφ˚pθqq “ θ

?

φ̂

φ˚pθq :“ φ ˝ θ ˝ φ̂φ˚pθq :“ φ˝θ˝φ̂
degφ

If ιpZrωsq “ ιpQpωqq
Ş

EndpE1q, then ι is a primitive Zrωs-orientation.
If φ˚pιq is a primitive Zrωs-orientation, then φ : pE1, ιq Ñ pE2, φ˚pιqq is horizontal.
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Motivations Background Contributions

Class group action

Let SSO be the set of primitive O-oriented elliptic curves up to isomorphisms.

pE1, ι1q

pE6, ι6q

pE5, ι5q

pE2, ι2q

pE4, ι4q

pE3, ι3q

pE1, ῑ1q

pE5, ῑ5q

pE6, ῑ6q

φa

φa then paq „ p1q For all pE , ιq P SSO and invertible O-ideal a,
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pE6, ῑ6q
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Motivations Background Contributions

Some problems of orientations

O-Vectorisation:

pE1, ι1q pE2, ι2qφa

Primitivisation:
Knowing an endomorphism Knowing an orientation

Knowing a primitive orientation

?
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Motivations Background Contributions

One more oriented problem

The O-oriented endomorphism ring problem (O-EndRing):

Given pE , ιq P SSO, find a basis of its endomorphism ring End pE q.

O-EndRing + factorisation of discpOq

GRH[Wes22]

discpZrωsq “ pω̄ ´ ωq
2

O-Vectorisation
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Motivations Background Contributions

Proof outline

A basis of EndpE q

E and θ P EndpE qzZ

E and ι : Zrθs ãÑ EndpE q

1

2

pE , ιq P SSO

Primitivisation

3 O-EndRing

➜ Goal: Give a complexity analysis of the EndRing
problem given one endomorphism under GRH only.

➀ Immediate.

State of the art:
➁ Hard problem with a heuristic subexponential

quantum complexity. [Arp+22]

➂ Under some heuristics, classically in | discpOq|1{4

and quantumly in subexpplog | discpOq|q. [Wes22]

11 / 20
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Motivations Background Contributions

Primitivisation problem [Arp+22]

Primitivisation:
Given E supersingular and θ P EndpE q, find the quadratic order O :“ Qpθq

Ş

EndpE q.

Ordinary EndRing:
Given E ordinary and π the Frobenius, find the quadratic order EndpE q Ď Qpπq.

Solving Ordinary EndRing:
Zrπs Ď EndpE q Ď OQpπq.
Given the factorisation of discpZrπsq, we can easily go through all O Ě Zrπs.
It remains to check for each of them if O Ď EndpE q. The maximal one will be EndpE q.

After SIDH’s attacks, checking an inclusion is made by dividing the Frobenius. [Rob22b].
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Motivations Background Contributions

Division of endomorphism

(Higher dimensional) Interpolation [Rob22a]

Given coprime integers N ă N 1 and four points P1,P2,Q1,Q2 such that

xP1,P2y “ E1rN 1s and xQ1,Q2y “ E2rN 1s with N 1 a B-powersmooth integer.

One can check the existence and compute in poly pl ,Bq time the isogeny of degree N

φ : E1 Ñ E2 such that φpP1q “ Q1 and φpP2q “ Q2.

Division of endomorphism [Rob22b; HW23]

Given an endomorphism θ P EndpE q and an integer n such that gcdpdeg θ, npq “ 1,
one can check if θ{n P End pE q and compute it in poly pl q time.

sketch of proof:
1 Compute a basis xP1,P2y of E rN 1s with N 1 plog deg θq-powersmooth.
2 Compute 1{n mod N 1 ÝÑ Q1 “ θpP1q{n and Q2 “ θpP2q{n.
3 Use the higher dimensional interpolation.
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Motivations Background Contributions

Applications to the Primitivisation problem

Proposition: Primitivisation

Given a Zrωs-oriented elliptic curve pE , ιq and the factorisation of disc pZrωsq,
one can compute the primitive orientation ι1 : O ãÑ End pE q such that O Ě Zrωs in poly pl q.

The factorisation of discpZrωsq gives the factorisation of its conductor f and ∆ :“ discpQpωqq.

Zrf
?
∆s ‘“’ Zrωs ùñ ι : Zrf

?
∆s ãÑ EndpE q

There exists some integer m dividing f such that O ‘“’ Zr f
m

?
∆s.

This integer m is the largest divisor of f such that ιpf
?
∆q{m P EndpE q.

Thus successive divisions of ιpf
?
∆q by the prime factors of f gives ι1 : O ãÑ EndpE q.
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Motivations Background Contributions

Applications to the class group action
Before SIDH’s attacks, one could compute actions of powersmooth ideals in polynomial time
and, under heuristics, actions of any ideals in subexponential time.

Action of a prime ideal p on pE , ιq in polynomial time

➀ Compute E rps and φp with standard methods.
➁ Compute pφpq˚pιq using the new division algorithm.

Action of a smooth ideal a on pE , ιq in polynomial time

➀ Decompose the ideal in product of prime ideals.
➁ Compute the action of each of them using the new action of prime ideal algorithm.

Under GRH Action of an ideal a on pE , ιq in subexponential time

➀ Compute a smooth ideal in the class of a in subexponential time under GRH, [CJS14].
➁ Compute the action of this ideal using the new action of smooth ideal algorithm.

Remark [PR23], CLAPOTI: CLass group Action in POlynomial TIme!
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Motivations Background Contributions

Proof outline (updated)

A basis of EndpE q

E and θ P EndpE qzZ

E and ι : Zrθs ãÑ EndpE q

1

2

pE , ιq P SSO

Primitivisation

3 O-EndRing

➜ Goal: Give a complexity analysis of the EndRing
problem given one endomorphism under GRH only.

➀ Immediate.

➁ Hard problem with a subexponential quantum
complexity.
Polynomial time given the factorisation of the
discriminant of Zrθs.

➂ Under some heuristics, classically in | discpOq1{4|

and quantumly in subexpplog | discpOq|q. [Wes22]
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Motivations Background Contributions

Solving O-Vect classically

Proposition: Classical O-Vectorisation (GRH)

Given pE1, ι1q and pE2, ι2q in SSO, one can find an O-ideal a such that φa : pE1, ι1q Ñ pE2, ι2q

in poly pl q ¨ |disc pOq|
1{4.

Before SIDH’s attacks, under heuristics, best algorithms were in | discpOq|1{4 using
meet-in-the-middle approach.

[CJS14] Under GRH, the Cayley graph pClpOq, tsmall prime O-idealuq has good mixing properties
ùñ MITM works.

● | ClpOq| “ Õp| discpOq|1{2q.
● Heuristics come from the powersmoothness constraint on the ideals’ norms.
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Before SIDH’s attacks, under heuristics, best algorithms were in | discpOq|1{4 using
meet-in-the-middle approach.

[CJS14] Under GRH, the Cayley graph pClpOq, tsmall prime O-idealuq has good mixing properties
ùñ MITM works.

● | ClpOq| “ Õp| discpOq|1{2q.
● Heuristics come from the powersmoothness constraint on the ideals’ norms.
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Proposition: Quantum O-Vectorisation (GRH)

Given pE1, ι1q and pE2, ι2q in SSO, one can find an O-ideal a such that φa : pE1, ι1q Ñ pE2, ι2q

in poly pl q ¨ subexp p log |disc pOq|q using a quantum algorithm.

Before SIDH’s attacks, under heuristics, best quantum algorithms were in
subexpplog | discpOq|q, see for instance [CJS14].

[Kup05] They use Kuperberg’s algorithm ùñ computation of a subexponential number of actions.
● Heuristics come from powersmoothing steps before computing those actions.
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Proof outline (re-updated)

A basis of EndpE q

E and θ P EndpE qzZ

E and ι : Zrθs ãÑ EndpE q

1

2

pE , ιq P SSO

Primitivisation

3 O-EndRing

➜ Goal: Give a complexity analysis of the EndRing
problem given one endomorphism under GRH only.

➀ Immediate.

➁ Hard problem with a subexponential quantum
complexity.
Polynomial time given the factorisation of the
discriminant of Zrθs.

➂ Under some heuristics Under GRH only, classically
in | discpOq1{4| and quantumly in
subexpplog | discpOq|q.
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EndRing given one endomorphism

Theorem: Classical EndRing problem given one endomorphism (GRH)

Given an elliptic curve E and an endomorphism θ P EndpE qzZ, one can compute a basis of the
endomorphism ring End pE q in time poly pl q ¨ |disc pZrθsq|

1{4.

Theorem: Quantum EndRing problem given one endomorphism (GRH)

Given an elliptic curve E and an endomorphism θ P EndpE qzZ, one can quantumly compute a
basis of the endomorphism ring End pE q in time poly pl q ¨ subexp p log |disc pZrθsq|q.

Remark: CSIDH and SCALLOP are safe! (At least in the face of this threat)
What’s next ?

Keep digging in the implications of higher dimensional isogenies over security analysis.
Improve the constructive applications.

Thanks for your attention!
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