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Supersingular endomorphism ring problem

The supersingular endomorphism ring problem (EndRing) :

Given a supersingular elliptic curve E, find a basis of its endomorphism ring End (E).
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Supersingular endomorphism ring problem

The supersingular endomorphism ring problem (EndRing) :

Given a supersingular elliptic curve E, find a basis of its endomorphism ring End (E).

[Rob22b] Given some integer factorisation, solving ordinary EndRing takes polynomial time.
[Wes21] EndRing <= Isogeny Problem under the Generalized Riemann Hypothesis.
@ Some protocols give a public endomorphism 6 € End(E)\Z:
[Cas+18] CSIDH The Frobenius endomorphism 7g : (x,y) — (xP, yP).
[Feo+23] SCALLOP An (Z + fZ][i])-orientation with f a large prime.
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find a basis of its endomorphism ring End (E).
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The supersingular endomorphism ring problem given one endomorphism:

Given a supersingular elliptic curve E and an endomorphism 6 € End(E)\Z,
find a basis of its endomorphism ring End (E).

EndRing | EndRing given one endomorphism 6
1/2

Classical p exp(log deg 8) under heuristics

1/4

Quantum p subexp(log deg #) under heuristics

Complexity of EndRing and its variant for an elliptic curve defined over F,2, with p a prime. [Arp422]
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® Z[0] ~ Z[X]/ < X2+ (§ + 6)X + degf >, i.e. Z[0] is a quadratic order.
® 7[6] — End(E).

Let O be an order of an imaginary quadratic field K.

® An embedding ¢ : K — End(E) ® Q is called an K-orientation,
it is an O-orientation if (D) < End(E).

@ An Z[w]-orientation ¢ is entirely given by ¢(w) € End (E).
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Oriented isogenies

Let ¢ : Z[w] — End(E;) be an orientation with «(w) = 6. Let ¢ : E; — E; an isogeny.

0 Y () := pofod
PelV) = Tdeg o
: 20
Bulipa(0) = 0 >

If «(Z[w]) = «(Q(w)) () End(Ey), then ¢ is a primitive Z[w]-orientation.
If ©x(¢) is a primitive Z[w]-orientation, then ¢ : (E1,t) — (Ez, ¢« (¢)) is horizontal.
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Let SSo be the set of primitive O-oriented elliptic curves up to isomorphisms.
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K‘. For all (E,t) € SSp and invertible O-ideal a,
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Let SSo be the set of primitive O-oriented elliptic curves up to isomorphisms.

(E1,t1)
For all (E, ) € S5o and invertible D-ideal a,
E s L E. )L
(Bs:c6) (£2,02) Efa] := () ker(1(a)) < E.
aea
The isogeny ¢, of kernel E[a] is horizontal!
(Es, t5) (Es, t3)
(E4,L4)

Proposition [Onu21]
The class group CI(9D) acts freely on SSo and has at most two orbits.
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Class group action

Let SSo be the set of primitive O-oriented elliptic curves up to isomorphisms.

(E1,t1)
For all (E, ) € S5o and invertible D-ideal a,
Eg, 1 E, 7
(Bs:c6) (£1.0) Efa] := () ker(1(a)) < E.
aea
The isogeny ¢, of kernel E[a] is horizontal!
(Es, ts5) (Ee.Z6)
(Es, s5)

Proposition [Onu21]
The class group CI(9D) acts freely on SSo and has at most two orbits.
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Knowing an endomorphism «——— Knowing an orientation
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The D-oriented endomorphism ring problem (©O-EndRing):

Given (E,¢) € SSp, find a basis of its endomorphism ring End (E).

10/20



Background
[e]e]e]e] Tele]

One more oriented problem

The D-oriented endomorphism ring problem (©O-EndRing):
Given (E,¢) € SSp, find a basis of its endomorphism ring End (E).

9-EndRing + factorisation of disc(O)

[Wes22] |GRH

v

-Vectorisation

10/20



Background
[e]e]e]e] Tele]

One more oriented problem

The D-oriented endomorphism ring problem (©O-EndRing):
Given (E,¢) € SSp, find a basis of its endomorphism ring End (E).

9-EndRing + factorisation of disc(O)

[Wes22] |GRH

v

-Vectorisation

10/20



Background
00000e0

Proof outline

Eandfe End(E)\Z‘ =>» Goal: Give a complexity analysis of the EndRing

problem given one endomorphism under GRH only.

A basis of End(E) |

11/20



Background
00000e0

Proof outline

Eandfe End(E)\Z‘

@ 4

| E and ¢ : Z[6] — End(E) |

=» Goal: Give a complexity analysis of the EndRing
problem given one endomorphism under GRH only.

A basis of End(E) |

11/20



Background
00000e0

Proof outline

Eandfe End(E)\Z‘

@ 4

| E and ¢ : Z[6] — End(E) |

=» Goal: Give a complexity analysis of the EndRing
problem given one endomorphism under GRH only.

| A basis of End(E)|

11/20



Background
00000e0

Proof outline

Eandfe End(E)\Z‘

@ 4

| E and ¢ : Z[6] — End(E) |

=» Goal: Give a complexity analysis of the EndRing
problem given one endomorphism under GRH only.

| A basis of End(E)|

11/20



Background
00000e0

Proof outline

Eandfe End(E)\Z‘

@ 4

| E and ¢ : Z[6] — End(E) |

=» Goal: Give a complexity analysis of the EndRing
problem given one endomorphism under GRH only.

@ Immediate.

| A basis of End(E)|

11/20



Proof outline

Background
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Eandfe End(E)\Z‘

@

Y

| A basis of End(E)|

=» Goal: Give a complexity analysis of the EndRing
problem given one endomorphism under GRH only.

@ Immediate.

State of the art:

@ Hard problem with a heuristic subexponential
quantum complexity. [Arp+22]
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Proof outline

Eandfe End(E)\Z‘ =>» Goal: Give a complexity analysis of the EndRing
@ problem given one endomorphism under GRH only.
Y
| E and ¢ : Z[6] — End(E) | ® Immediate.
Primitivisation State of the art:
l @ Hard problem with a heuristic subexponential
(E,¢) € S50 quantum complexity. [Arp+22]
@ -EndRing
- ' ® Under some heuristics, classically in | disc(O)|'/*
’A basis of End(E) ‘ and quantumly in subexp(log | disc(D)|). [Wes22]
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Given E supersingular and 0 € End(E), find the quadratic order O := Q(6) () End(E).
Ordinary EndRing;

Given E ordinary and 7 the Frobenius, find the quadratic order End(E) < Q(n).

Solving Ordinary EndRing:

[ ] Z[TK‘] - End(E) < OQ(W).
m Given the factorisation of disc(Z[r]), we can easily go through all O 2 Z[x].
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Primitivisation:

Given E supersingular and 0 € End(E), find the quadratic order O := Q(6) () End(E).
Ordinary EndRing;

Given E ordinary and 7 the Frobenius, find the quadratic order End(E) < Q(n).

Solving Ordinary EndRing:

m Z[r] < End(E) < Og(r)-

m Given the factorisation of disc(Z[r]), we can easily go through all O 2 Z[x].

m It remains to check for each of them if O < End(E). The maximal one will be End(E).
After SIDH'’s attacks, checking an inclusion is made by dividing the Frobenius. [Rob22b].
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(Higher dimensional) Interpolation [Rob22a]

Given coprime integers N < N’ and four points P, P, Q1, Q> such that
(Py, Pyy = E1[N'] and {(Q1, @) = Ex[N'] with N’ a B-powersmooth integer.

One can check the existence and compute in poly (/, B) time the isogeny of degree N

v : By — Ep such that o(Py) = Q1 and o(P2) = Q.

13/20



Contributions
00000000

Division of endomorphism

(Higher dimensional) Interpolation [Rob22a]

Given coprime integers N < N’ and four points P, P, Q1, Q> such that
(Py, Pyy = E1[N'] and {(Q1, @) = Ex[N'] with N’ a B-powersmooth integer.

One can check the existence and compute in poly (/, B) time the isogeny of degree N

¢ : By — E5 such that ¢(P1) = Q1 and o(P2) = Q.

Division of endomorphism [Rob22b; HW23]

Given an endomorphism 6 € End(E) and an integer n such that gcd(deg 6, np) = 1,
one can check if 8/n € End (E) and compute it in poly (/) time.

13/20



Contribu

tions

®0000000

Division of endomorphism

(Higher dimensional) Interpolation [Rob22a]
Given coprime integers N < N’ and four points P, P, Q1, Q> such that

(Py, Pyy = E1[N'] and {(Q1, @) = Ex[N'] with N’ a B-powersmooth integer.

One can check the existence and compute in poly (/, B) time the isogeny of degree N

¢ : By — E5 such that ¢(P1) = Q1 and o(P2) = Q.

Division of endomorphism [Rob22b; HW23]

Given an endomorphism 6 € End(E) and an integer n such that gcd(deg 6, np) = 1,

one can check if 8/n € End (E) and compute it in poly (/) time.
v

sketch of proof:
Compute a basis (Py, Po) of E[N'] with N’ (log deg 6)-powersmooth.

13/20



Contribu

tions

®0000000

Division of endomorphism

(Higher dimensional) Interpolation [Rob22a]
Given coprime integers N < N’ and four points P, P, Q1, Q> such that

(Py, Pyy = E1[N'] and {(Q1, @) = Ex[N'] with N’ a B-powersmooth integer.

One can check the existence and compute in poly (/, B) time the isogeny of degree N

¢ : By — E5 such that ¢(P1) = Q1 and o(P2) = Q.

Division of endomorphism [Rob22b; HW23]

Given an endomorphism 6 € End(E) and an integer n such that gcd(deg 6, np) = 1,

one can check if 8/n € End (E) and compute it in poly (/) time.
v

sketch of proof:
Compute a basis (Py, Po) of E[N'] with N’ (log deg 6)-powersmooth.
Compute 1/n mod N/

13/20



Contributions
00000000

Division of endomorphism

(Higher dimensional) Interpolation [Rob22a]
Given coprime integers N < N’ and four points P, P, Q1, Q> such that

(Py, Pyy = E1[N'] and {(Q1, @) = Ex[N'] with N’ a B-powersmooth integer.

One can check the existence and compute in poly (/, B) time the isogeny of degree N

¢ : By — E5 such that ¢(P1) = Q1 and o(P2) = Q.

Division of endomorphism [Rob22b; HW23]

Given an endomorphism 6 € End(E) and an integer n such that gcd(deg 6, np) = 1,
one can check if 8/n € End (E) and compute it in poly (/) time.
v

sketch of proof:
Compute a basis (Py, Po) of E[N'] with N’ (log deg 6)-powersmooth.
Compute 1/n mod N' — @y = 6(Py1)/n and Q2 = 0(P>)/n.

13/20



Contributions
00000000

Division of endomorphism

(Higher dimensional) Interpolation [Rob22a]
Given coprime integers N < N’ and four points P, P, Q1, Q> such that

(Py, Pyy = E1[N'] and {(Q1, @) = Ex[N'] with N’ a B-powersmooth integer.

One can check the existence and compute in poly (/, B) time the isogeny of degree N

¢ : By — E5 such that ¢(P1) = Q1 and o(P2) = Q.

Division of endomorphism [Rob22b; HW23]

Given an endomorphism 6 € End(E) and an integer n such that gcd(deg 6, np) = 1,
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v
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Proposition: Primitivisation

Given a Z[w]-oriented elliptic curve (E,¢) and the factorisation of disc (Z|w]),
one can compute the primitive orientation ¢’ : © — End (E) such that O 2 Z[w] in poly (/).

The factorisation of disc(Z[w]) gives the factorisation of its conductor f and A := disc(Q(w)).

Z[FVA] ‘=" Zw] = «: Z[fVA] — End(E)

There exists some integer m dividing f such that O ‘=" Z[£+/A].
This integer m is the largest divisor of f such that «(fy/A)/m € End(E).

14 /20



Contributions
0e000000

Applications to the Primitivisation problem

Proposition: Primitivisation

Given a Z[w]-oriented elliptic curve (E,¢) and the factorisation of disc (Z|w]),
one can compute the primitive orientation ¢’ : © — End (E) such that O 2 Z[w] in poly (/).

The factorisation of disc(Z[w]) gives the factorisation of its conductor f and A := disc(Q(w)).

Z[FVA] ‘=" Zw] = «: Z[fVA] — End(E)

There exists some integer m dividing f such that O ‘=" Z[£+/A].
This integer m is the largest divisor of f such that «(fy/A)/m € End(E).
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Action of a prime ideal p on (E,¢) in polynomial time

@ Compute E[p] and ¢, with standard methods.
@ Compute (pp)«(¢) using the new division algorithm.

Action of a smooth ideal a on (E,¢) in polynomial time

@® Decompose the ideal in product of prime ideals.

@ Compute the action of each of them using the new action of prime ideal algorithm.

Under GRH Action of an ideal a on (E,¢) in subexponential time

@ Compute a smooth ideal in the class of a in subexponential time under GRH, [CJS14].

@ Compute the action of this ideal using the new action of smooth ideal algorithm.

Remark [PR23], CLAPOTI: Class group Action in POlynomial TIme!
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Proof outline (updated)

E and 0  End(E)\Z|

@ Y

’ E and ¢ : Z[#] — End(E) ‘

]A basis of End(E) \

=» Goal: Give a complexity analysis of the EndRing
problem given one endomorphism under GRH only.

® Immediate.
@ Hard-problem—with-a—subexponentialquantum

complexity

Polynomial time given the factorisation of the
discriminant of Z[6].

® Under some heuristics, classically in | disc(9)Y/*|
and quantumly in subexp(log | disc(D)|). [Wes22]

16 /20



Contributions
[e]e]e]e] Telele]

Solving -Vect classically

Proposition: Classical O-Vectorisation (GRH)

Given (Ej,¢1) and (Ez,tp) in SSp, one can find an D-ideal a such that ¢, : (E1,t1) — (Ep, t2)
in poly (/) - | disc (D)|1/4.
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Solving -Vect classically

Proposition: Classical O-Vectorisation (GRH)
Given (Ej,¢1) and (Ez,tp) in SSp, one can find an D-ideal a such that ¢, : (E1,t1) — (Ep, t2)
in poly (/) - | disc (D)|1/4.

Before SIDH'’s attacks, under heuristics, best algorithms were in | disc(9)|'/* using
meet-in-the-middle approach.
[CJS14] Under GRH, the Cayley graph (CI(9), {small prime O-ideal}) has good mixing properties
= MITM works.
® [CI(D)| = O(| disc(D)]*2).

@ Heuristics come from the powersmoothness constraint on the ideals' norms.

17 /20



Contributions
[e]e]e]e]e] lele]

Solving -Vect quantumly

Proposition: Quantum O-Vectorisation (GRH)

Given (Eq,t1) and (Ez, tp) in SSo, one can find an O-ideal a such that ¢q : (E1,t1) — (E2,t2)
in poly (/) - subexp (log | disc (9)|) using a quantum algorithm.
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Proposition: Quantum O-Vectorisation (GRH)

Given (Eq,t1) and (Ez, tp) in SSo, one can find an O-ideal a such that ¢q : (E1,t1) — (E2,t2)
in poly (/) - subexp (log | disc (9)|) using a quantum algorithm.

Before SIDH's attacks, under heuristics, best quantum algorithms were in
subexp(log | disc(D)]), see for instance [CJS14].

[Kup05] They use Kuperberg's algorithm == computation of a subexponential number of actions.

@ Heuristics come from powersmoothing steps before computing those actions.
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Proof outline (re-updated)
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Eandfe End(E)\Z‘

@ v

’ E and ¢ : Z[#] — End(E) ‘

’A basis of End(E) ‘

=» Goal: Give a complexity analysis of the EndRing
problem given one endomorphism under GRH only.

@® Immediate.

@ Hard-problem—with-a—subexponentialquantum
complexity.

Polynomial time given the factorisation of the
discriminant of Z[6].

® Undersome-heuristies Under GRH only, classically
in | disc(9)'4| and quantumly in
subexp(log | disc(D)|).
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EndRing given one endomorphism

Theorem: Classical EndRing problem given one endomorphism (GRH)

Given an elliptic curve E and an endomorphism 6 € End(E)\Z, one can compute a basis of the
endomorphism ring End (E) in time poly (/) - | disc (Z[G])|1/4.

Theorem: Quantum EndRing problem given one endomorphism (GRH)

Given an elliptic curve E and an endomorphism 6 € End(E)\Z, one can quantumly compute a
basis of the endomorphism ring End (E) in time poly (/) - subexp (log | disc (Z[0])]).
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EndRing given one endomorphism

Theorem: Classical EndRing problem given one endomorphism (GRH)

Given an elliptic curve E and an endomorphism 6 € End(E)\Z, one can compute a basis of the
endomorphism ring End (E) in time poly (/) - | disc (Z[G])|1/4.

Theorem: Quantum EndRing problem given one endomorphism (GRH)

Given an elliptic curve E and an endomorphism 6 € End(E)\Z, one can quantumly compute a
basis of the endomorphism ring End (E) in time poly (/) - subexp (log | disc (Z[0])]).

Remark: CSIDH and SCALLOP are safe! (At least in the face of this threat)
What's next ?

m Keep digging in the implications of higher dimensional isogenies over security analysis.
m Improve the constructive applications.

Thanks for your attention!
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