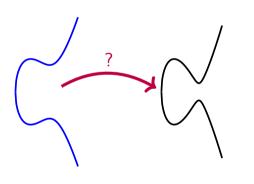
The endomorphism ring problem given an endomorphism

Arthur Herlédan Le Merdy, Benjamin Wesolowski

Tuesday 9th April, 2024

Hard problems

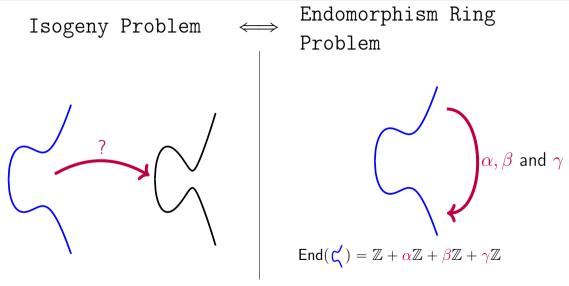
Isogeny Problem



Background

Contributions

Hard problems



The supersingular endomorphism ring problem (EndRing):

Given a supersingular elliptic curve \boldsymbol{E} , find a basis of its endomorphism ring End (\boldsymbol{E}).

The supersingular endomorphism ring problem (EndRing):

Given a supersingular elliptic curve \boldsymbol{E} , find a basis of its endomorphism ring End (\boldsymbol{E}).

[Rob22b] Given some integer factorisation, solving ordinary EndRing takes polynomial time.

The supersingular endomorphism ring problem (EndRing):

Given a supersingular elliptic curve \boldsymbol{E} , find a basis of its endomorphism ring End (\boldsymbol{E}).

The supersingular endomorphism ring problem (EndRing):

Given a supersingular elliptic curve \boldsymbol{E} , find a basis of its endomorphism ring End (\boldsymbol{E}).

[Rob22b] Given some integer factorisation, solving ordinary EndRing takes polynomial time.
[Wes21] EndRing ↔ Isogeny Problem under the Generalized Riemann Hypothesis.

• Some protocols give a public endomorphism $\theta \in \text{End}(E) \setminus \mathbb{Z}$: [Cas+18] <u>CSIDH</u> The Frobenius endomorphism $\pi_E : (x, y) \mapsto (x^p, y^p)$. [Feo+23] <u>SCALLOP</u> An $(\mathbb{Z} + f\mathbb{Z}[i])$ -orientation with f a large prime.

The supersingular endomorphism ring problem given one endomorphism:

Given a supersingular elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \text{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, find a basis of its endomorphism ring $\text{End}(\boldsymbol{E})$.

The supersingular endomorphism ring problem given one endomorphism:

Given a supersingular elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \text{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, find a basis of its endomorphism ring $\text{End}(\boldsymbol{E})$.

	EndRing	EndRing given one endomorphism $\boldsymbol{\theta}$
Classical	p ^{1/2}	$\exp(\log \deg \theta)$ under heuristics
Quantum	p ^{1/4}	$\operatorname{subexp}(\log \deg \theta)$ under heuristics

Complexity of EndRing and its variant for an elliptic curve defined over \mathbb{F}_{p^2} , with p a prime. [Arp+22]

The supersingular endomorphism ring problem given one endomorphism:

Given a supersingular elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \text{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, find a basis of its endomorphism ring $\text{End}(\boldsymbol{E})$.

	EndRing	EndRing given one endomorphism $ heta$
Classical	$p^{1/2}$	$\deg(heta)^{1/4}$ under GRH under heuristics
Quantum	p ^{1/4}	$\exp(\textit{O}(\sqrt{\log(\deg\theta)\log\log(\deg\theta))}) \text{under GRH under heuristics}$

Complexity of EndRing and its variant for an elliptic curve defined over \mathbb{F}_{p^2} , with p a prime. [Arp+22]

The supersingular endomorphism ring problem given one endomorphism:

Given a supersingular elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \text{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, find a basis of its endomorphism ring $\text{End}(\boldsymbol{E})$.

	EndRing	EndRing given one endomorphism $ heta$
Classical	$p^{1/2}$	$\deg(heta)^{1/4}$ under GRH under heuristics
Quantum	$p^{1/4}$	$subexp(log(deg \theta))under GRH under heuristics$

Complexity of EndRing and its variant for an elliptic curve defined over \mathbb{F}_{p^2} , with p a prime. [Arp+22]

Orientations [CK20]

Let $\theta \in \operatorname{End}(E) \setminus \mathbb{Z}$.

- $\mathbb{Z}[\theta] \simeq \mathbb{Z}[X] / \langle X^2 + (\hat{\theta} + \theta)X + \deg \theta \rangle$, i.e. $\mathbb{Z}[\theta]$ is a quadratic order.
- $\mathbb{Z}[\theta] \hookrightarrow \operatorname{End}(E).$

Orientations [CK20]

Let $\theta \in \operatorname{End}(E) \setminus \mathbb{Z}$.

- $\mathbb{Z}[\theta] \simeq \mathbb{Z}[X] / \langle X^2 + (\hat{\theta} + \theta)X + \deg \theta \rangle$, i.e. $\mathbb{Z}[\theta]$ is a quadratic order.
- $\mathbb{Z}[\theta] \hookrightarrow \operatorname{End}(E).$

Let \mathfrak{O} be an order of an imaginary quadratic field K.

- An embedding $\iota : K \hookrightarrow \operatorname{End}(E) \otimes \mathbb{Q}$ is called an *K*-orientation, it is an \mathfrak{D} -orientation if $\iota(\mathfrak{D}) \subseteq \operatorname{End}(E)$.
- An $\mathbb{Z}[\omega]$ -orientation ι is entirely given by $\iota(\omega) \in \text{End}(\boldsymbol{E})$.

Orientations [CK20]

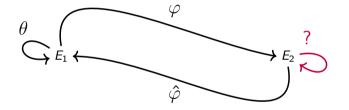
Let $\theta \in \operatorname{End}(E) \setminus \mathbb{Z}$.

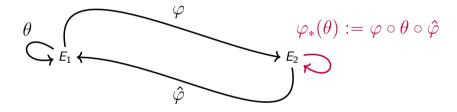
- $\mathbb{Z}[\theta] \simeq \mathbb{Z}[X] / \langle X^2 + (\hat{\theta} + \theta)X + \deg \theta \rangle$, i.e. $\mathbb{Z}[\theta]$ is a quadratic order.
- $\mathbb{Z}[\theta] \hookrightarrow \operatorname{End}(E).$

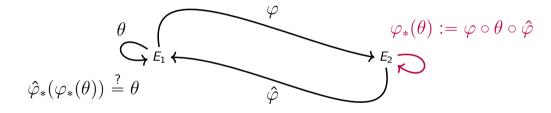
Let \mathfrak{O} be an order of an imaginary quadratic field K.

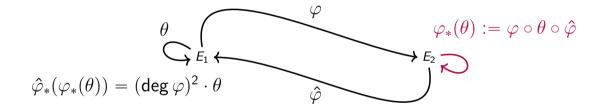
- An embedding $\iota : K \hookrightarrow \operatorname{End}(E) \otimes \mathbb{Q}$ is called an *K*-orientation, it is an \mathfrak{D} -orientation if $\iota(\mathfrak{D}) \subseteq \operatorname{End}(E)$.
- An $\mathbb{Z}[\omega]$ -orientation ι is entirely given by $\iota(\omega) \in \text{End}(\boldsymbol{E})$.

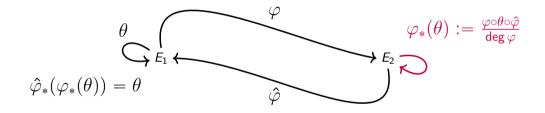
Knowing an endomorphism \longleftrightarrow Knowing an orientation



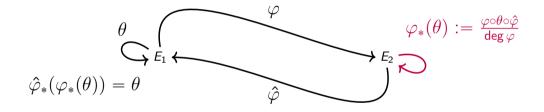






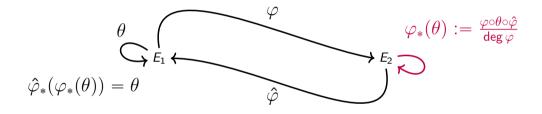


Let $\iota : \mathbb{Z}[\omega] \hookrightarrow \operatorname{End}(E_1)$ be an orientation with $\iota(\omega) = \theta$. Let $\varphi : E_1 \to E_2$ an isogeny.



If $\iota(\mathbb{Z}[\omega]) = \iota(\mathbb{Q}(\omega)) \bigcap \operatorname{End}(E_1)$, then ι is a **primitive** $\mathbb{Z}[\omega]$ -orientation.

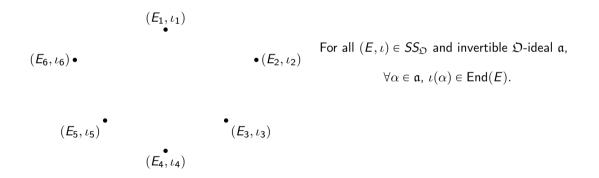
Let $\iota : \mathbb{Z}[\omega] \hookrightarrow \operatorname{End}(E_1)$ be an orientation with $\iota(\omega) = \theta$. Let $\varphi : E_1 \to E_2$ an isogeny.

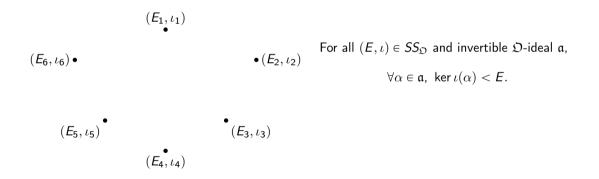


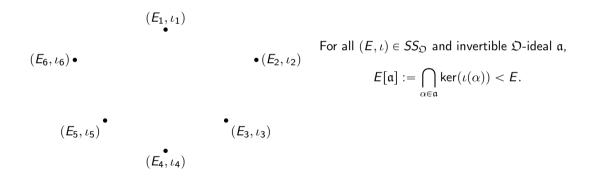
If $\iota(\mathbb{Z}[\omega]) = \iota(\mathbb{Q}(\omega)) \bigcap \operatorname{End}(E_1)$, then ι is a **primitive** $\mathbb{Z}[\omega]$ -orientation. If $\varphi_*(\iota)$ is a primitive $\mathbb{Z}[\omega]$ -orientation, then $\varphi : (E_1, \iota) \to (E_2, \varphi_*(\iota))$ is **horizontal**.

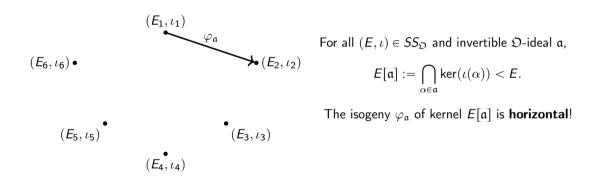
Let $SS_{\mathfrak{O}}$ be the set of primitive \mathfrak{O} -oriented elliptic curves up to isomorphisms.

 (E_{1}, ι_{1}) $(E_{6}, \iota_{6}) \bullet \qquad \bullet (E_{2}, \iota_{2})$ $(E_{5}, \iota_{5}) \bullet \qquad \bullet (E_{3}, \iota_{3})$ (E_{4}, ι_{4})









Let $SS_{\mathfrak{O}}$ be the set of primitive \mathfrak{O} -oriented elliptic curves up to isomorphisms.

 (E_1, ι_1) For all $(E, \iota) \in SS_{\mathfrak{O}}$ and invertible \mathfrak{O} -ideal \mathfrak{a} , $(E_6, \iota_6) \bullet$ $\bullet(E_2,\iota_2)$ $E[\mathfrak{a}] := \bigcap \ker(\iota(\alpha)) < E.$ $\alpha \in \mathfrak{a}$ The isogeny $\varphi_{\mathfrak{a}}$ of kernel $E[\mathfrak{a}]$ is **horizontal**! $(E_{5}, \iota_{5})^{\bullet}$ (E_3, ι_3) (E_{4}, ι_{4})

Proposition [Onu21]

The class group $Cl(\mathfrak{O})$ acts freely on $SS_{\mathfrak{O}}$ and has at most two orbits.

Let $SS_{\mathfrak{D}}$ be the set of primitive \mathfrak{D} -oriented elliptic curves up to isomorphisms.

 (E_{1}, ι_{1}) For all $(E, \iota) \in SS_{\mathfrak{D}}$ and invertible \mathfrak{D} -ideal \mathfrak{a} , $(E_{6}, \iota_{6}) \bullet$ $(E_{5}, \iota_{5}) \bullet$ (E_{4}, ι_{4}) (E_{1}, ι_{1}) For all $(E, \iota) \in SS_{\mathfrak{D}}$ and invertible \mathfrak{D} -ideal \mathfrak{a} , $\bullet (E_{2}, \iota_{2})$ $E[\mathfrak{a}] := \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)) < E.$ The isogeny $\varphi_{\mathfrak{a}}$ of kernel $E[\mathfrak{a}]$ is horizontal!

Proposition [Onu21]

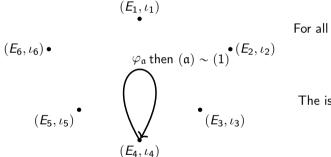
The class group $Cl(\mathfrak{O})$ acts freely on $SS_{\mathfrak{O}}$ and has at most two orbits.

Motivations

Background

Class group action

Let $SS_{\mathfrak{O}}$ be the set of primitive \mathfrak{O} -oriented elliptic curves up to isomorphisms.



For all $(E, \iota) \in SS_{\mathfrak{O}}$ and invertible \mathfrak{O} -ideal \mathfrak{a} ,

$$E[\mathfrak{a}] := \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)) < E.$$

The isogeny $\varphi_{\mathfrak{a}}$ of kernel $E[\mathfrak{a}]$ is **horizontal**!

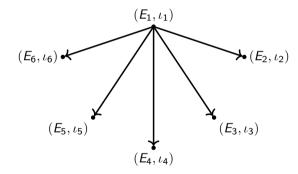
Proposition [Onu21]

The class group $\mathcal{C}l(\mathfrak{O})$ acts freely on $\mathit{SS}_\mathfrak{O}$ and has at most two orbits.

Background

Class group action

Let $SS_{\mathfrak{O}}$ be the set of primitive \mathfrak{O} -oriented elliptic curves up to isomorphisms.



For all $(E, \iota) \in SS_{\mathfrak{O}}$ and invertible \mathfrak{O} -ideal \mathfrak{a} ,

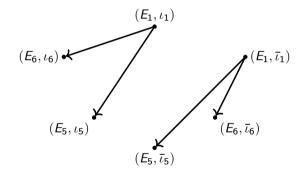
$$E[\mathfrak{a}] := \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)) < E.$$

The isogeny $\varphi_{\mathfrak{a}}$ of kernel $E[\mathfrak{a}]$ is **horizontal**!

Proposition [Onu21]

The class group $Cl(\mathfrak{O})$ acts **freely** on $SS_{\mathfrak{O}}$ and has <u>at most two orbits</u>.

Let $SS_{\mathfrak{O}}$ be the set of primitive \mathfrak{O} -oriented elliptic curves up to isomorphisms.



For all $(E, \iota) \in SS_{\mathfrak{O}}$ and invertible \mathfrak{O} -ideal \mathfrak{a} ,

$$E[\mathfrak{a}] := \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)) < E.$$

The isogeny $\varphi_{\mathfrak{a}}$ of kernel $E[\mathfrak{a}]$ is **horizontal**!

Proposition [Onu21]

The class group $Cl(\mathfrak{O})$ acts **freely** on $SS_{\mathfrak{O}}$ and has <u>at most two orbits</u>.

Some problems of orientations

<u>D-Vectorisation</u>:

Some problems of orientations

$\underline{\mathfrak{O}} ext{-Vectorisation:}$

(E_1, ι_1)

Some problems of orientations

$\underline{\mathfrak{O}} ext{-Vectorisation:}$

$$(E_1, \iota_1) \qquad \varphi_{\mathfrak{a}} \qquad (E_2, \iota_2)$$

\mathfrak{O} -Vectorisation:

$$(E_1, \iota_1) \qquad \varphi_{\mathfrak{a}} \qquad (E_2, \iota_2)$$

Primitivisation:

\mathfrak{O} -Vectorisation:

$$(E_1,\iota_1) \qquad \varphi_{\mathfrak{a}} \qquad (E_2,\iota_2)$$

Primitivisation:

Knowing an endomorphism \longleftrightarrow Knowing an orientation

\mathfrak{O} -Vectorisation:

$$(E_1, \iota_1) \qquad \varphi_{\mathfrak{a}} \qquad (E_2, \iota_2)$$

Primitivisation:

Knowing an endomorphism \longleftrightarrow Knowing an orientation

Knowing a primitive orientation

$\underline{\mathfrak{O}\text{-Vectorisation:}}$

$$(E_1, \iota_1) \qquad \varphi_{\mathfrak{a}} \qquad (E_2, \iota_2)$$

Primitivisation:

Knowing an endomorphism \longleftrightarrow Knowing an orientation

One more oriented problem

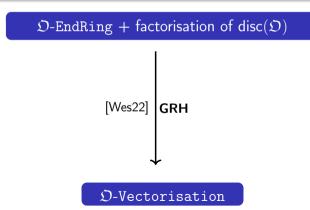
The $\mathfrak O\text{-oriented}$ endomorphism ring problem ($\mathfrak O\text{-EndRing})$:

Given $(\boldsymbol{E}, \boldsymbol{\iota}) \in SS_{\mathfrak{O}}$, find a basis of its endomorphism ring **End** (\boldsymbol{E}) .

One more oriented problem

The \mathfrak{O} -oriented endomorphism ring problem (\mathfrak{O} -EndRing):

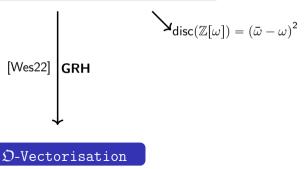
Given $(\boldsymbol{E}, \boldsymbol{\iota}) \in SS_{\mathfrak{O}}$, find a basis of its endomorphism ring $\mathbf{End}(\boldsymbol{E})$.



One more oriented problem

The \mathfrak{O} -oriented endomorphism ring problem (\mathfrak{O} -EndRing):

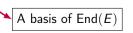
Given $(\boldsymbol{E}, \boldsymbol{\iota}) \in SS_{\mathfrak{O}}$, find a basis of its endomorphism ring $\mathbf{End}(\boldsymbol{E})$.



Mo	tiva	atic	ns
00	00		

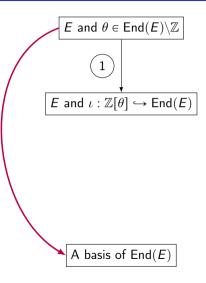
Proof outline

E and $\theta \in \operatorname{End}(E) \setminus \mathbb{Z}$

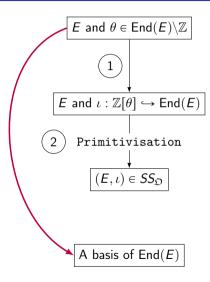


Contributions

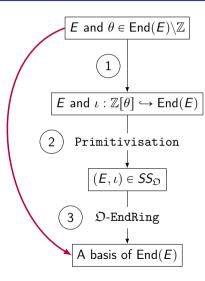
Proof outline



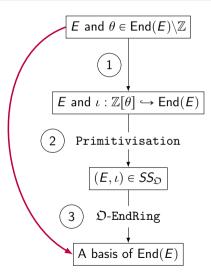
Proof outline



Proof outline



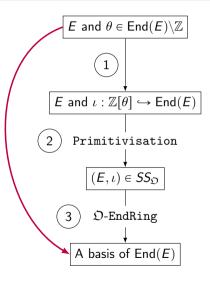
Proof outline



→ Goal: Give a complexity analysis of the EndRing problem given one endomorphism under GRH only.

1 Immediate.

Proof outline



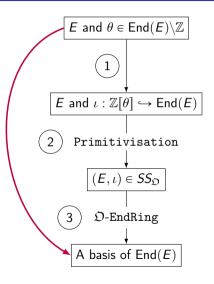
→ Goal: Give a complexity analysis of the EndRing problem given one endomorphism under GRH only.

1 Immediate.

State of the art:

② Hard problem with a heuristic subexponential quantum complexity. [Arp+22]

Proof outline



→ Goal: Give a complexity analysis of the EndRing problem given one endomorphism under GRH only.

① Immediate.

State of the art:

② Hard problem with a heuristic subexponential quantum complexity. [Arp+22]

Primitivisation:

Given *E* supersingular and $\theta \in \text{End}(E)$, find the **quadratic order** $\mathfrak{O} := \mathbb{Q}(\theta) \bigcap \text{End}(E)$.

Primitivisation:

Given **E** supersingular and $\theta \in \text{End}(E)$, find the **quadratic order** $\mathfrak{O} := \mathbb{Q}(\theta) \bigcap \text{End}(E)$. Ordinary EndRing:

Given *E* ordinary and π the Frobenius, find the quadratic order $End(E) \subseteq \mathbb{Q}(\pi)$.

Primitivisation:

Given **E** supersingular and $\theta \in \text{End}(E)$, find the **quadratic order** $\mathfrak{O} := \mathbb{Q}(\theta) \bigcap \text{End}(E)$. Ordinary EndRing:

Given *E* ordinary and π the Frobenius, find the **quadratic order** $End(E) \subseteq \mathbb{Q}(\pi)$.

Solving Ordinary EndRing:

Primitivisation:

Given **E** supersingular and $\theta \in \text{End}(E)$, find the **quadratic order** $\mathfrak{O} := \mathbb{Q}(\theta) \bigcap \text{End}(E)$. Ordinary EndRing:

Given *E* ordinary and π the Frobenius, find the **quadratic order** $End(E) \subseteq \mathbb{Q}(\pi)$.

Solving Ordinary EndRing:

 $\blacksquare \mathbb{Z}[\pi] \subseteq \operatorname{End}(E) \subseteq \mathcal{O}_{\mathbb{Q}(\pi)}.$

Primitivisation:

Given **E** supersingular and $\theta \in \text{End}(E)$, find the **quadratic order** $\mathfrak{O} := \mathbb{Q}(\theta) \bigcap \text{End}(E)$. Ordinary EndRing:

Given *E* ordinary and π the Frobenius, find the **quadratic order** $End(E) \subseteq \mathbb{Q}(\pi)$.

Solving Ordinary EndRing:

- $\blacksquare \mathbb{Z}[\pi] \subseteq \operatorname{End}(E) \subseteq \mathcal{O}_{\mathbb{Q}(\pi)}.$
- Given the factorisation of disc($\mathbb{Z}[\pi]$), we can easily go through all $\mathcal{O} \supseteq \mathbb{Z}[\pi]$.

Primitivisation:

Given **E** supersingular and $\theta \in \text{End}(E)$, find the **quadratic order** $\mathfrak{O} := \mathbb{Q}(\theta) \bigcap \text{End}(E)$. Ordinary EndRing:

Given *E* ordinary and π the Frobenius, find the **quadratic order** $End(E) \subseteq \mathbb{Q}(\pi)$.

Solving Ordinary EndRing:

- $\blacksquare \mathbb{Z}[\pi] \subseteq \operatorname{End}(E) \subseteq \mathcal{O}_{\mathbb{Q}(\pi)}.$
- Given the factorisation of disc($\mathbb{Z}[\pi]$), we can easily go through all $\mathcal{O} \supseteq \mathbb{Z}[\pi]$.
- It remains to check for each of them if $\mathcal{O} \subseteq \text{End}(E)$. The maximal one will be End(E).

Primitivisation:

Given **E** supersingular and $\theta \in \text{End}(E)$, find the **quadratic order** $\mathfrak{O} := \mathbb{Q}(\theta) \bigcap \text{End}(E)$. Ordinary EndRing:

Given *E* ordinary and π the Frobenius, find the quadratic order $End(E) \subseteq \mathbb{Q}(\pi)$.

Solving Ordinary EndRing:

- $\blacksquare \mathbb{Z}[\pi] \subseteq \operatorname{End}(E) \subseteq \mathcal{O}_{\mathbb{Q}(\pi)}.$
- Given the factorisation of disc($\mathbb{Z}[\pi]$), we can easily go through all $\mathcal{O} \supseteq \mathbb{Z}[\pi]$.
- It remains to check for each of them if $\mathcal{O} \subseteq \text{End}(E)$. The maximal one will be End(E).

After SIDH's attacks, checking an inclusion is made by dividing the Frobenius. [Rob22b].

(Higher dimensional) Interpolation [Rob22a]

Given coprime integers $\pmb{N} < \pmb{N}'$ and four points $\pmb{P}_1, \pmb{P}_2, \pmb{Q}_1, \pmb{Q}_2$ such that

 $\langle P_1,P_2\rangle=E_1[N']$ and $\langle Q_1,Q_2\rangle=E_2[N']$ with N' a B-powersmooth integer.

One can check the existence and compute in poly (I, B) time the isogeny of degree N

 $\varphi: E_1 \to E_2$ such that $\varphi(P_1) = Q_1$ and $\varphi(P_2) = Q_2$.

(Higher dimensional) Interpolation [Rob22a]

Given coprime integers $\pmb{N} < \pmb{N}'$ and four points $\pmb{P}_1, \pmb{P}_2, \pmb{Q}_1, \pmb{Q}_2$ such that

 $\langle P_1, P_2 \rangle = E_1[N']$ and $\langle Q_1, Q_2 \rangle = E_2[N']$ with N' a *B*-powersmooth integer.

One can check the existence and compute in poly (I, B) time the isogeny of degree N

 $\varphi: E_1 \to E_2$ such that $\varphi(P_1) = Q_1$ and $\varphi(P_2) = Q_2$.

Division of endomorphism [Rob22b; HW23]

Given an endomorphism $\theta \in \text{End}(E)$ and an integer *n* such that $gcd(\deg \theta, np) = 1$, one can **check if** $\theta/n \in \text{End}(E)$ and **compute it** in **poly**(*I*) time.

(Higher dimensional) Interpolation [Rob22a]

Given coprime integers $\pmb{N} < \pmb{N}'$ and four points $\pmb{P}_1, \pmb{P}_2, \pmb{Q}_1, \pmb{Q}_2$ such that

 $\langle P_1, P_2 \rangle = E_1[N']$ and $\langle Q_1, Q_2 \rangle = E_2[N']$ with N' a *B*-powersmooth integer.

One can check the existence and compute in poly (I, B) time the isogeny of degree N

 $\varphi: E_1 \to E_2$ such that $\varphi(P_1) = Q_1$ and $\varphi(P_2) = Q_2$.

Division of endomorphism [Rob22b; HW23]

Given an endomorphism $\theta \in \text{End}(E)$ and an integer *n* such that $gcd(\deg \theta, np) = 1$, one can **check if** $\theta/n \in \text{End}(E)$ and **compute it** in **poly**(*I*) time.

sketch of proof:

1 Compute a basis $\langle P_1, P_2 \rangle$ of E[N'] with $N' (\log \deg \theta)$ -powersmooth.

(Higher dimensional) Interpolation [Rob22a]

Given coprime integers $\pmb{N} < \pmb{N}'$ and four points $\pmb{P}_1, \pmb{P}_2, \pmb{Q}_1, \pmb{Q}_2$ such that

 $\langle P_1, P_2 \rangle = E_1[N']$ and $\langle Q_1, Q_2 \rangle = E_2[N']$ with N' a *B*-powersmooth integer.

One can check the existence and compute in poly (I, B) time the isogeny of degree N

 $\varphi: E_1 \to E_2$ such that $\varphi(P_1) = Q_1$ and $\varphi(P_2) = Q_2$.

Division of endomorphism [Rob22b; HW23]

Given an endomorphism $\theta \in \text{End}(E)$ and an integer *n* such that $gcd(\deg \theta, np) = 1$, one can **check if** $\theta/n \in \text{End}(E)$ and **compute it** in **poly**(*I*) time.

sketch of proof:

- **1** Compute a basis $\langle P_1, P_2 \rangle$ of E[N'] with $N' (\log \deg \theta)$ -powersmooth.
- **2** Compute $1/n \mod N'$

(Higher dimensional) Interpolation [Rob22a]

Given coprime integers $\pmb{N} < \pmb{N}'$ and four points $\pmb{P}_1, \pmb{P}_2, \pmb{Q}_1, \pmb{Q}_2$ such that

 $\langle P_1, P_2 \rangle = E_1[N']$ and $\langle Q_1, Q_2 \rangle = E_2[N']$ with N' a *B*-powersmooth integer.

One can check the existence and compute in poly (I, B) time the isogeny of degree N

 $\varphi: E_1 \to E_2$ such that $\varphi(P_1) = Q_1$ and $\varphi(P_2) = Q_2$.

Division of endomorphism [Rob22b; HW23]

Given an endomorphism $\theta \in \text{End}(E)$ and an integer *n* such that $gcd(\deg \theta, np) = 1$, one can **check if** $\theta/n \in \text{End}(E)$ and **compute it** in **poly**(*I*) time.

sketch of proof:

- **1** Compute a basis $\langle P_1, P_2 \rangle$ of E[N'] with $N' (\log \deg \theta)$ -powersmooth.
- 2 Compute $1/n \mod N' \longrightarrow Q_1 = \theta(P_1)/n$ and $Q_2 = \theta(P_2)/n$.

(Higher dimensional) Interpolation [Rob22a]

Given coprime integers $\pmb{N} < \pmb{N}'$ and four points $\pmb{P}_1, \pmb{P}_2, \pmb{Q}_1, \pmb{Q}_2$ such that

 $\langle P_1, P_2 \rangle = E_1[N']$ and $\langle Q_1, Q_2 \rangle = E_2[N']$ with N' a *B*-powersmooth integer.

One can check the existence and compute in poly (I, B) time the isogeny of degree N

 $\varphi: E_1 \to E_2$ such that $\varphi(P_1) = Q_1$ and $\varphi(P_2) = Q_2$.

Division of endomorphism [Rob22b; HW23]

Given an endomorphism $\theta \in \text{End}(E)$ and an integer *n* such that $gcd(\deg \theta, np) = 1$, one can **check if** $\theta/n \in \text{End}(E)$ and **compute it** in **poly**(*I*) time.

sketch of proof:

- **I** Compute a basis $\langle P_1, P_2 \rangle$ of E[N'] with $N' (\log \deg \theta)$ -powersmooth.
- 2 Compute $1/n \mod N' \longrightarrow Q_1 = \theta(P_1)/n$ and $Q_2 = \theta(P_2)/n$.
- **3** Use the higher dimensional interpolation.

Proposition: Primitivisation

Given a $\mathbb{Z}[\omega]$ -oriented elliptic curve (\boldsymbol{E}, ι) and the factorisation of disc $(\mathbb{Z}[\omega])$, one can compute the primitive orientation $\iota' : \mathfrak{O} \hookrightarrow \text{End}(\boldsymbol{E})$ such that $\mathfrak{O} \supseteq \mathbb{Z}[\omega]$ in poly (\boldsymbol{I}) .

Proposition: Primitivisation

Given a $\mathbb{Z}[\omega]$ -oriented elliptic curve (\boldsymbol{E}, ι) and the factorisation of disc $(\mathbb{Z}[\boldsymbol{\omega}])$, one can compute the primitive orientation $\iota' : \mathfrak{O} \hookrightarrow \text{End}(\boldsymbol{E})$ such that $\mathfrak{O} \supseteq \mathbb{Z}[\omega]$ in poly (\boldsymbol{I}) .

The factorisation of disc($\mathbb{Z}[\omega]$) gives the factorisation of its conductor f and $\Delta := \operatorname{disc}(\mathbb{Q}(\omega))$.

Proposition: Primitivisation

Given a $\mathbb{Z}[\omega]$ -oriented elliptic curve (\boldsymbol{E}, ι) and the factorisation of disc $(\mathbb{Z}[\boldsymbol{\omega}])$, one can compute the primitive orientation $\iota' : \mathfrak{O} \hookrightarrow \text{End}(\boldsymbol{E})$ such that $\mathfrak{O} \supseteq \mathbb{Z}[\omega]$ in poly (\boldsymbol{I}) .

The factorisation of disc($\mathbb{Z}[\omega]$) gives the factorisation of its conductor f and $\Delta := \operatorname{disc}(\mathbb{Q}(\omega))$.

$$\mathbb{Z}[f\sqrt{\Delta}] \mathrel{`='} \mathbb{Z}[\omega] \implies \iota: \mathbb{Z}[f\sqrt{\Delta}] \hookrightarrow \mathsf{End}(E)$$

Proposition: Primitivisation

Given a $\mathbb{Z}[\omega]$ -oriented elliptic curve (\boldsymbol{E}, ι) and the factorisation of disc $(\mathbb{Z}[\boldsymbol{\omega}])$, one can compute the primitive orientation $\iota' : \mathfrak{O} \hookrightarrow \text{End}(\boldsymbol{E})$ such that $\mathfrak{O} \supseteq \mathbb{Z}[\omega]$ in poly (\boldsymbol{I}) .

The factorisation of disc($\mathbb{Z}[\omega]$) gives the factorisation of its conductor f and $\Delta := \operatorname{disc}(\mathbb{Q}(\omega))$.

$$\mathbb{Z}[f\sqrt{\Delta}] \mathrel{`='} \mathbb{Z}[\omega] \implies \iota: \mathbb{Z}[f\sqrt{\Delta}] \hookrightarrow \mathsf{End}(E)$$

There exists some integer *m* dividing *f* such that $\mathfrak{O} := \mathbb{Z}[\frac{f}{m}\sqrt{\Delta}]$.

Proposition: Primitivisation

Given a $\mathbb{Z}[\omega]$ -oriented elliptic curve (\boldsymbol{E}, ι) and the factorisation of disc $(\mathbb{Z}[\boldsymbol{\omega}])$, one can compute the primitive orientation $\iota' : \mathfrak{O} \hookrightarrow \text{End}(\boldsymbol{E})$ such that $\mathfrak{O} \supseteq \mathbb{Z}[\omega]$ in poly (\boldsymbol{I}) .

The factorisation of disc($\mathbb{Z}[\omega]$) gives the factorisation of its conductor f and $\Delta := \operatorname{disc}(\mathbb{Q}(\omega))$.

$$\mathbb{Z}[f\sqrt{\Delta}] \ `=' \ \mathbb{Z}[\omega] \implies \iota: \mathbb{Z}[f\sqrt{\Delta}] \hookrightarrow \mathsf{End}(E)$$

There exists some integer *m* dividing *f* such that $\mathfrak{O} := \mathbb{Z}[\frac{f}{m}\sqrt{\Delta}]$. This integer *m* is the largest divisor of *f* such that $\iota(f\sqrt{\Delta})/m \in \operatorname{End}(E)$.

Proposition: Primitivisation

Given a $\mathbb{Z}[\omega]$ -oriented elliptic curve (\boldsymbol{E}, ι) and the factorisation of disc $(\mathbb{Z}[\boldsymbol{\omega}])$, one can compute the primitive orientation $\iota' : \mathfrak{O} \hookrightarrow \text{End}(\boldsymbol{E})$ such that $\mathfrak{O} \supseteq \mathbb{Z}[\omega]$ in poly (\boldsymbol{I}) .

The factorisation of disc($\mathbb{Z}[\omega]$) gives the factorisation of its conductor f and $\Delta := \operatorname{disc}(\mathbb{Q}(\omega))$.

$$\mathbb{Z}[f\sqrt{\Delta}] \ `=' \ \mathbb{Z}[\omega] \implies \iota: \mathbb{Z}[f\sqrt{\Delta}] \hookrightarrow \mathsf{End}(E)$$

There exists some integer *m* dividing *f* such that $\mathfrak{O} := \mathbb{Z}[\frac{f}{m}\sqrt{\Delta}]$. This integer *m* is the largest divisor of *f* such that $\iota(f\sqrt{\Delta})/m \in \operatorname{End}(E)$.

Thus successive divisions of $\iota(f\sqrt{\Delta})$ by the prime factors of f gives $\iota': \mathfrak{O} \hookrightarrow \operatorname{End}(E)$.

Applications to the class group action

Before SIDH's attacks, one could compute actions of powersmooth ideals in polynomial time and, **under heuristics**, actions of any ideals in subexponential time.

Applications to the class group action

Before SIDH's attacks, one could compute actions of powersmooth ideals in polynomial time and, **under heuristics**, actions of any ideals in subexponential time.

Action of a prime ideal \mathfrak{p} on (E, ι) in polynomial time

- ① Compute $E[\mathfrak{p}]$ and $\varphi_{\mathfrak{p}}$ with standard methods.
- ② Compute $(\varphi_{\mathfrak{p}})_{*}(\iota)$ using the new division algorithm.

Applications to the class group action

Before SIDH's attacks, one could compute actions of powersmooth ideals in polynomial time and, **under heuristics**, actions of any ideals in subexponential time.

Action of a prime ideal \mathfrak{p} on (E, ι) in polynomial time

- ① Compute $E[\mathfrak{p}]$ and $\varphi_{\mathfrak{p}}$ with standard methods.
- ② Compute $(\varphi_{\mathfrak{p}})_{*}(\iota)$ using the new division algorithm.

Action of a smooth ideal \mathfrak{a} on (E, ι) in polynomial time

- ① Decompose the ideal in product of prime ideals.
- 2 Compute the action of each of them using the new action of prime ideal algorithm.

Applications to the class group action

Before SIDH's attacks, one could compute actions of powersmooth ideals in polynomial time and, **under heuristics**, actions of any ideals in subexponential time.

Action of a prime ideal \mathfrak{p} on (E, ι) in polynomial time

- ① Compute $E[\mathfrak{p}]$ and $\varphi_{\mathfrak{p}}$ with standard methods.
- ² Compute $(\varphi_{\mathfrak{p}})_{*}(\iota)$ using the new division algorithm.

Action of a smooth ideal \mathfrak{a} on (E, ι) in polynomial time

- ① Decompose the ideal in product of prime ideals.
- 2 Compute the action of each of them using the new action of prime ideal algorithm.

Under GRH Action of an ideal \mathfrak{a} on (E, ι) in subexponential time

- ① Compute a smooth ideal in the class of \mathfrak{a} in subexponential time under GRH, [CJS14].
- 2 Compute the action of this ideal using the new action of smooth ideal algorithm.

Applications to the class group action

Before SIDH's attacks, one could compute actions of powersmooth ideals in polynomial time and, **under heuristics**, actions of any ideals in subexponential time.

Action of a prime ideal \mathfrak{p} on (E, ι) in polynomial time

- ① Compute $E[\mathfrak{p}]$ and $\varphi_{\mathfrak{p}}$ with standard methods.
- ② Compute $(\varphi_{\mathfrak{p}})_*(\iota)$ using the new division algorithm.

Action of a smooth ideal \mathfrak{a} on (E, ι) in polynomial time

- ① Decompose the ideal in product of prime ideals.
- 2 Compute the action of each of them using the new action of prime ideal algorithm.

Under GRH Action of an ideal \mathfrak{a} on (E, ι) in subexponential time

- ① Compute a smooth ideal in the class of \mathfrak{a} in subexponential time under GRH, [CJS14].
- 2 Compute the action of this ideal using the new action of smooth ideal algorithm.

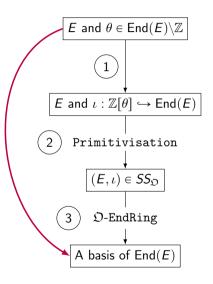
<u>Remark</u> [PR23], CLAPOTI: CLass group Action in POlynomial TIme!

Motivations

Background

Contributions

Proof outline (updated)



→ Goal: Give a complexity analysis of the EndRing problem given one endomorphism under GRH only.

1 Immediate.

② Hard problem with a subexponential quantum complexity.

Polynomial time given the factorisation of the discriminant of $\mathbb{Z}[\theta]$.

Solving \mathfrak{O} -Vect classically

Proposition: Classical *D*-Vectorisation (GRH)

Given (\mathbf{E}_1, ι_1) and (\mathbf{E}_2, ι_2) in $SS_{\mathfrak{O}}$, one can find an \mathfrak{O} -ideal \mathfrak{a} such that $\varphi_{\mathfrak{a}} : (E_1, \iota_1) \to (E_2, \iota_2)$ in **poly** $(\mathbf{I}) \cdot |\operatorname{disc}(\mathfrak{O})|^{1/4}$.

Solving \mathfrak{O} -Vect classically

Proposition: Classical *D*-Vectorisation (GRH)

Given $(\boldsymbol{E}_1, \boldsymbol{\iota}_1)$ and $(\boldsymbol{E}_2, \boldsymbol{\iota}_2)$ in $SS_{\mathfrak{O}}$, one can find an \mathfrak{O} -ideal \mathfrak{a} such that $\varphi_{\mathfrak{a}} : (E_1, \boldsymbol{\iota}_1) \to (E_2, \boldsymbol{\iota}_2)$ in **poly** $(\boldsymbol{I}) \cdot |\operatorname{disc}(\mathfrak{O})|^{1/4}$.

Before SIDH's attacks, under heuristics, best algorithms were in $|\,disc(\mathfrak{O})|^{1/4}$ using meet-in-the-middle approach.

Solving D-Vect classically

Proposition: Classical \mathfrak{O} -Vectorisation (GRH)

Given $(\boldsymbol{E}_1, \boldsymbol{\iota}_1)$ and $(\boldsymbol{E}_2, \boldsymbol{\iota}_2)$ in $SS_{\mathfrak{O}}$, one can find an \mathfrak{O} -ideal \mathfrak{a} such that $\varphi_{\mathfrak{a}} : (E_1, \boldsymbol{\iota}_1) \to (E_2, \boldsymbol{\iota}_2)$ in **poly** $(\boldsymbol{I}) \cdot |\operatorname{disc}(\mathfrak{O})|^{1/4}$.

Before SIDH's attacks, under heuristics, best algorithms were in $|\,disc(\mathfrak{O})|^{1/4}$ using meet-in-the-middle approach.

[CJS14] Under GRH, the Cayley graph ($CI(\mathfrak{O})$, {small prime \mathfrak{O} -ideal}) has good mixing properties \implies MITM works.

Solving D-Vect classically

Proposition: Classical \mathfrak{O} -Vectorisation (GRH)

Given $(\boldsymbol{E}_1, \boldsymbol{\iota}_1)$ and $(\boldsymbol{E}_2, \boldsymbol{\iota}_2)$ in $SS_{\mathfrak{O}}$, one can find an \mathfrak{O} -ideal \mathfrak{a} such that $\varphi_{\mathfrak{a}} : (E_1, \boldsymbol{\iota}_1) \to (E_2, \boldsymbol{\iota}_2)$ in **poly** $(\boldsymbol{I}) \cdot |\operatorname{disc}(\mathfrak{O})|^{1/4}$.

Before SIDH's attacks, under heuristics, best algorithms were in $|\,disc(\mathfrak{O})|^{1/4}$ using meet-in-the-middle approach.

[CJS14] Under GRH, the Cayley graph ($CI(\mathfrak{O})$, {small prime \mathfrak{O} -ideal}) has good mixing properties \implies MITM works.

 $\bullet \ |\operatorname{\mathcal{C}I}(\mathfrak{O})| = \tilde{O}(|\operatorname{disc}(\mathfrak{O})|^{1/2}).$

Solving \mathfrak{D} -Vect classically

Proposition: Classical D-Vectorisation (GRH)

Given $(\boldsymbol{E}_1, \boldsymbol{\iota}_1)$ and $(\boldsymbol{E}_2, \boldsymbol{\iota}_2)$ in $SS_{\mathfrak{O}}$, one can find an \mathfrak{O} -ideal \mathfrak{a} such that $\varphi_{\mathfrak{a}} : (E_1, \boldsymbol{\iota}_1) \to (E_2, \boldsymbol{\iota}_2)$ in **poly** $(\boldsymbol{I}) \cdot |\operatorname{disc}(\mathfrak{O})|^{1/4}$.

Before SIDH's attacks, under heuristics, best algorithms were in $|\,disc(\mathfrak{O})|^{1/4}$ using meet-in-the-middle approach.

[CJS14] Under GRH, the Cayley graph ($CI(\mathfrak{O})$, {small prime \mathfrak{O} -ideal}) has good mixing properties \implies MITM works.

 $\bullet \ |\operatorname{\mathcal{C}I}(\mathfrak{O})| = \tilde{O}(|\operatorname{disc}(\mathfrak{O})|^{1/2}).$

• Heuristics come from the powersmoothness constraint on the ideals' norms.

Solving D-Vect quantumly

Proposition: Quantum D-Vectorisation (GRH)

Given (\mathbf{E}_1, ι_1) and (\mathbf{E}_2, ι_2) in $SS_{\mathfrak{O}}$, one can find an \mathfrak{O} -ideal \mathfrak{a} such that $\varphi_{\mathfrak{a}} : (E_1, \iota_1) \to (E_2, \iota_2)$ in **poly** $(\mathbf{I}) \cdot$ **subexp** $(\log | \operatorname{disc}(\mathfrak{O}) |)$ using a quantum algorithm.

Solving **D**-Vect quantumly

Proposition: Quantum D-Vectorisation (GRH)

Given (\mathbf{E}_1, ι_1) and (\mathbf{E}_2, ι_2) in $SS_{\mathfrak{O}}$, one can find an \mathfrak{O} -ideal \mathfrak{a} such that $\varphi_{\mathfrak{a}} : (E_1, \iota_1) \to (E_2, \iota_2)$ in **poly** $(\mathbf{I}) \cdot \mathbf{subexp} (\log |\operatorname{disc} (\mathfrak{O})|)$ using a quantum algorithm.

Before SIDH's attacks, **under heuristics**, best quantum algorithms were in subexp(log | disc(\mathfrak{O})|), see for instance [CJS14].

Solving D-Vect quantumly

Proposition: Quantum D-Vectorisation (GRH)

Given (\mathbf{E}_1, ι_1) and (\mathbf{E}_2, ι_2) in $SS_{\mathfrak{O}}$, one can find an \mathfrak{O} -ideal \mathfrak{a} such that $\varphi_{\mathfrak{a}} : (E_1, \iota_1) \to (E_2, \iota_2)$ in **poly** $(\mathbf{I}) \cdot$ **subexp** $(\log | \operatorname{disc} (\mathfrak{O}) |)$ using a quantum algorithm.

Before SIDH's attacks, **under heuristics**, best quantum algorithms were in subexp(log | disc(\mathfrak{O})|), see for instance [CJS14].

[Kup05] They use Kuperberg's algorithm \implies computation of a subexponential number of actions.

Solving \mathfrak{O} -Vect quantumly

Proposition: Quantum D-Vectorisation (GRH)

Given (\mathbf{E}_1, ι_1) and (\mathbf{E}_2, ι_2) in $SS_{\mathfrak{O}}$, one can find an \mathfrak{O} -ideal \mathfrak{a} such that $\varphi_{\mathfrak{a}} : (E_1, \iota_1) \to (E_2, \iota_2)$ in **poly** $(\mathbf{I}) \cdot \mathbf{subexp} (\log |\operatorname{disc} (\mathfrak{O})|)$ using a quantum algorithm.

Before SIDH's attacks, **under heuristics**, best quantum algorithms were in subexp(log | disc(\mathfrak{O})|), see for instance [CJS14].

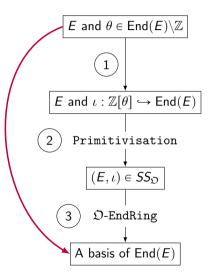
[Kup05] They use Kuperberg's algorithm \implies computation of a subexponential number of actions.

• Heuristics come from powersmoothing steps before computing those actions.

Background

Contributions

Proof outline (re-updated)



→ Goal: Give a complexity analysis of the EndRing problem given one endomorphism under GRH only.

① Immediate.

② Hard problem with a subexponential quantum complexity.

Polynomial time given the factorisation of the discriminant of $\mathbb{Z}[\theta].$

Theorem: Classical EndRing problem given one endomorphism (GRH)

Given an elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \operatorname{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, one can compute a basis of the endomorphism ring $\operatorname{End}(\boldsymbol{E})$ in time $\operatorname{poly}(\boldsymbol{I}) \cdot |\operatorname{disc}(\mathbb{Z}[\boldsymbol{\theta}])|^{1/4}$.

Theorem: Quantum EndRing problem given one endomorphism (GRH)

Given an elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \text{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, one can quantumly compute a basis of the endomorphism ring $\text{End}(\boldsymbol{E})$ in time $\text{poly}(\boldsymbol{I}) \cdot \text{subexp}(\log |\operatorname{disc}(\mathbb{Z}[\boldsymbol{\theta}])|)$.

Theorem: Classical EndRing problem given one endomorphism (GRH)

Given an elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \operatorname{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, one can compute a basis of the endomorphism ring $\operatorname{End}(\boldsymbol{E})$ in time $\operatorname{poly}(\boldsymbol{I}) \cdot |\operatorname{disc}(\mathbb{Z}[\boldsymbol{\theta}])|^{1/4}$.

Theorem: Quantum EndRing problem given one endomorphism (GRH)

Given an elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \text{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, one can quantumly compute a basis of the endomorphism ring $\text{End}(\boldsymbol{E})$ in time $\text{poly}(\boldsymbol{I}) \cdot \text{subexp}(\log |\operatorname{disc}(\mathbb{Z}[\boldsymbol{\theta}])|)$.

<u>Remark</u>: CSIDH and SCALLOP are safe! (At least in the face of this threat)

Theorem: Classical EndRing problem given one endomorphism (GRH)

Given an elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \operatorname{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, one can compute a basis of the endomorphism ring $\operatorname{End}(\boldsymbol{E})$ in time $\operatorname{poly}(\boldsymbol{I}) \cdot |\operatorname{disc}(\mathbb{Z}[\boldsymbol{\theta}])|^{1/4}$.

Theorem: Quantum EndRing problem given one endomorphism (GRH)

Given an elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \text{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, one can quantumly compute a basis of the endomorphism ring $\text{End}(\boldsymbol{E})$ in time $\text{poly}(\boldsymbol{I}) \cdot \text{subexp}(\log |\operatorname{disc}(\mathbb{Z}[\boldsymbol{\theta}])|)$.

<u>**Remark:**</u> CSIDH and SCALLOP are safe! (At least in the face of this threat) What's next ?

- Keep digging in the implications of higher dimensional isogenies over security analysis.
- Improve the constructive applications.

Theorem: Classical EndRing problem given one endomorphism (GRH)

Given an elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \operatorname{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, one can compute a basis of the endomorphism ring $\operatorname{End}(\boldsymbol{E})$ in time $\operatorname{poly}(\boldsymbol{I}) \cdot |\operatorname{disc}(\mathbb{Z}[\boldsymbol{\theta}])|^{1/4}$.

Theorem: Quantum EndRing problem given one endomorphism (GRH)

Given an elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \text{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, one can quantumly compute a basis of the endomorphism ring $\text{End}(\boldsymbol{E})$ in time $\text{poly}(\boldsymbol{I}) \cdot \text{subexp}(\log |\operatorname{disc}(\mathbb{Z}[\boldsymbol{\theta}])|)$.

<u>**Remark:**</u> CSIDH and SCALLOP are safe! (At least in the face of this threat) What's next ?

- Keep digging in the implications of higher dimensional isogenies over security analysis.
- Improve the constructive applications.

Thanks for your attention!

Bibliography I

- [Arp+22] Sarah Arpin et al. "Orienteering with one endomorphism". In: CoRR abs/2201.11079 (2022). arXiv: 2201.11079. url: https://arxiv.org/abs/2201.11079.
- [Cas+18] Wouter
 - Castryck et al. "CSIDH: An Efficient Post-Quantum Commutative Group Action". In: Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theor Ed. by Thomas Peyrin and Steven D. Galbraith. Vol. 11274. Lecture Notes in Computer Science. Springer, 2018, pp. 395–427. url: https://doi.org/10.1007/978-3-030-03332-3%5C_15.
- [CJS14] Andrew M. Childs, David Jao, and Vladimir Soukharev. "Constructing elliptic curve isogenies in quantum subexponential time". In: J. Math. Cryptol. 8.1 (2014), pp. 1–29. url: https://doi.org/10.1515/jmc-2012-0016.
- [CK20] Leonardo Colò and David Kohel. "Orienting supersingular isogeny graphs". In: <u>IACR Cryptol. ePrint Arch.</u> (2020), p. 985. url: <u>https://eprint.iacr.org/2020/985.</u>

Bibliography II

[Feo+23] Luca De Feo et al. "SCALLOP: scaling the CSI-FiSh". In: IACR International Conference on Public-Key Cryptography. Springer, 2023, pp. 345–375.

[HW23] Arthur Herlédan Le Merdy and Benjamin Wesolowski. <u>The supersingular endomorphism ring problem given one endomorphism</u>. Cryptology ePrint Archive, Paper 2023/1448. 2023. url: <u>https://eprint.iacr.org/2023/1448</u>.

[Kup05] Greg Kuperberg. "A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem". In: <u>SIAM J. Comput.</u> 35.1 (2005), pp. 170–188. url: https://doi.org/10.1137/S0097539703436345.

[Onu21] Hiroshi Onuki. "On oriented supersingular elliptic curves". In: Finite Fields Their Appl. 69 (2021), p. 101777. url: https://doi.org/10.1016/j.ffa.2020.101777.

Bibliography III

[PR23] Aurel Page and Damien Robert. Introducing Clapoti(s): Evaluating the isogeny class group action in polynomial time. Cryptology ePrint Archive, Paper 2023/1766. 2023. url: https://eprint.iacr.org/2023/1766. [Rob22a] Damien Robert. "Evaluating isogenies in polylogarithmic time". In: IACR Cryptol. ePrint Arch. (2022), p. 1068. url: https://eprint.iacr.org/2022/1068. [Rob22b] Damien Robert. "Some applications of higher dimensional isogenies to elliptic curves (preliminary version)". In: IACR Cryptol. ePrint Arch. (2022), p. 1704. url: https://eprint.iacr.org/2022/1704. [Wes21] Benjamin Wesolowski. "The supersingular isogeny path and endomorphism ring problems are equivalent". In: 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, IEEE, 2021, pp. 1100–1111. url: https://doi.org/10.1109/F0CS52979.2021.00109.

Bibliography IV

[Wes22]

Benjamin Wesolowski. "Orientations and the Supersingular Endomorphism Ring Problem". In: Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on t Ed. by Orr Dunkelman and Stefan Dziembowski. Vol. 13277. Lecture Notes in Computer Science. Springer, 2022, pp. 345–371. url: https://doi.org/10.1007/978-3-031-07082-2%5C_13.